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Restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses
mE ,mM ,mS, under gravitational interaction.

Classical assumptions:
1 (Restricted) mS “ 0, i.e. S is negligible.
2 (Circular) The primaries E and M move in circles around their

center of mass.
3 (Planar) S moves in the plane containing E and M.

Spatial case: drop the planar assumption.

Goal: Study motion of S.
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Spatial circular restricted three-body problem

In rotating coordinates where E “ pµ,0,0q,M “ p´1 ` µ,0,0q are
fixed, the Hamiltonian is autonomous and so is conserved:

H : R3ztE ,Mu ˆ R3 Ñ R

Hpq,pq “
1
2
}p}2 ´

µ

}q ´M}
´

1´ µ
}q ´ E}

` p1q2 ´ p2q1,

where we normalize so that mE `mM “ 1, and µ “ mM .

Planar problem: p3 “ q3 “ 0 (flow-invariant subset).

Two parameters: µ, and H “ c Jacobi constant.
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Lagrangian points
H has five critical points: L1, . . . ,L5 called Lagrangians.

H(L )=H(L )4 5

H(L )2 H(L )3

H(L )1

-3/2

μ

c

μ=1μ=0

rotating Kepler
   problem

c=-∞
Kepler problem

low energy
   range

The critical values of H.
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Integrable limit cases
If µ “ 0 ù H “ K ` L, where

K pq,pq “
1
2
}p}2 ´

1
}q}

is the Kepler energy (two-body problem), and

L “ p1q2 ´ p2q1

is the Coriolis/centrifugal term. This is the rotating Kepler problem.

We have tH,K u “ tH,Lu “ tK ,Lu “ 0 and so

φH
t “ φH

t ˝ φ
L
t .

If T pK q “ π
2p´K q3{2 is the period of a Kepler ellipse of energy K ă 0

(Kepler’s 3rd law), then closed orbits iff K satisfies the resonance con-
dition

T pK q “
a
b

2π, for some a,b P Z.

Fact: c Ñ ´8ù Kepler problem (after regularization).
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Periodic orbits in the rotating Kepler problem

Some orbits with different resonance.
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Low energy Hill regions

near-Earth near-Moon
E M

asteroids

c<H(L )1
Σ MP,cΣ EP,c

q

p

Morse theory in the three-body problem.

Agustin Moreno Universität Heidelberg 8 / 54



Low energy Hill regions

near-Earth near-Moon
E M

asteroids

c ∈ (H(L ), H(L )+ )1

transfer

1 ɛ

Σ E,M
P,c

q

p

Morse theory in the three-body problem.
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Level sets of potential

The Lagrange points and the level sets of the potential. The Euler points
L1,L2,L3 are collinear and unstable, the Lagrange points L4,L5 give
equilateral triangles and are stable.
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Moser regularization
H is singular at collisions (q “ E ó q “ M ù p “ 8).
Moser regularization, near E or M:

pq,pq switch
ÞÝÑ p´p,qq

estereo. proj.
ÞÝÑ pξ, ηq P T ˚S3

ù regularized Hamiltonian Q : T ˚S3 Ñ R, with level set Q´1p0q “
Σ

E
c – S˚S3 “ S3 ˆ S2.

p=∞

p=0

S3

S2

collision locus

planar problem

Σ = S*S E
c

3

Σ = S*SE
P,c

2

Moser regularization near E .
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Contact geometry of the three-body problem
Σ

E
c , Σ

M
c bounded energy components for c ă HpL1q, Σ

E ,M
c connected

sum bounded component, c P pHpL1q,HpL2qq. Similarly, Σ
E
P,c , Σ

M
P,c and

Σ
E ,M
P,c for planar problem.

Theorem ([AFvKP] (planar problem), [CJK] (spatial problem))
We have

Σ
E
c – Σ

M
c – pS

˚S3, ξstdq, if c ă HpL1q,

Σ
E
P,c – Σ

M
P,c – pS

˚S2, ξstdq, if c ă HpL1q,

and

Σ
E ,M
c – pS˚S3, ξstdq#pS˚S3, ξstdq, if c P pHpL1q,HpL1q ` εq.

Σ
E ,M
P,c – pS

˚S2, ξstdq#pS˚S2, ξstdq, if c P pHpL1q,HpL1q ` εq.

In all above cases, the planar problem is a codimension-2 contact
submanifold of the spatial problem. ˝

Agustin Moreno Universität Heidelberg 12 / 54



Poincaré-Birkhoff and the planar problem
To find closed orbits in the planar problem, Poincaré’s approach is:
(1) Global surface of section for the dynamics;
(2) Fixed point theorem for the return map.

x

f(x)

D*S =S x[0,1]1 1

This is the setting for the Poincaré-Birkhoff theorem.

Goal: Generalize this approach to the spatial problem.
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Step 1: Global
hypersurfaces of section

Agustin Moreno Universität Heidelberg 14 / 54



Open book decompositions

An OBD on M is a fibration

π : MzB Ñ S1,

with B Ă M codim-2, and
πpb, r , θq “ θ on collar B ˆ D2.

Notation: M “ OBpP, φq.

P “ π´1pptq “page;
B “ BP “binding;

φ : P –
Ñ P monodromy,

φ|B “ id .
S1

P

B
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Global hypersurfaces of section

ϕt : M Ñ M flow, then π is adapted to the dynamics if B is invariant,
and orbits are transverse to the interior of all pages.

Each page P is a global hypersurface of section, i.e.
P is codimension-1;
B “ BP is invariant;
orbits in MzB meet interior of pages transversely.

ù Poincaré return map f : intpPq Ñ intpPq.
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Step 1: Open books in the spatial three-body problem

Σc “ H´1pcq bounded regularized energy surface in the spatial 3BP.

Theorem (M–van Koert)
For µ P p0,1q,

Σc “

"

OBpD˚S2, τ2q, c ă HpL1q,

OBpD˚S26D˚S2, τ2
1 ˝ τ

2
2 q, c P pHpL1q,HpL1q ` εq,

,

adapted to the dynamics.
τ, τi “ Dehn-Seidel twist.
Binding “ planar problem.

This reduces the dynamics to that of the return map, a Hamiltonian
map of D˚S2. The section is non-perturbative, and explicit (good for
numerics).
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Open books

RP

S1

2

(planar problem)

D*S

f

Hamiltonian flow

3
S xS23
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Basic idea

Let B “ tp3 “ q3 “ 0u (planar problem). Define

πpq,pq “
q3 ` ip3

}q3 ` ip3}
P S1, dπ “

p3dq3 ´ q3dp3

p2
3 ` q2

3
.

Then

dπpXHq “
p2

3 ` q2
3 ¨

´

1´µ
}q´E}3 `

µ
}q´M}3

¯

p2
3 ` q2

3
ą 0,

if p2
3 ` q2

3 ‰ 0, and the numerator vanishes only on B.

Problem: It does not extend to the collision locus q “ E ,q “ M.
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Physical interpretation

The fiber over π{2 corresponds to q3 “ 0, p3 ą 0, and the spatial orbits of S
are transverse to the plane containing E ,M away from collisions.
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Polar orbits

E

S

Polar orbits prevent transversality on the collision locus.
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The geodesic open book

Sn-1

SnS*Sn

   Higher-dimensional 
Birkhoff "annulus"≅ D*S
      (the 0-page)  

n-1

Sn-1

SnS*S n

Dn-1

   The θ-page  

geodesic  flow

Dn-1
sin(θ)

1

0

1-

-

-

-

-

The geodesic open book for S˚Sn.
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Return map

Theorem (M.–van Koert)
For every µ P p0,1s, c ă HpL1q, and page P, the return map f extends
smoothly to the boundary B “ BP, and in the interior it is an exact
symplectomorphism

f “ fc,µ : pintpPq, ωq Ñ pintpPq, ωq,

where ω “ dα|P , α “ αµ,c contact form. Moreover, f is Hamiltonian in
the interior, and the Hamiltonian isotopy extends smoothly to the
boundary.

Here, ω degenerates at B, but after a continuous conjugation, it is ac-
tually symplectic and deformation equivalent to the standard sym-
plectic form. The return map however extends only continuously after
conjugation. The Hamiltonian is not rel boundary.
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Remarks

The fact that f is a symplectomorphism follows easily from
Liouville’s theorem.
The fact that f extends to the boundary is non-trivial (relies on
convexity in directions normal to the binding, cf. dynamical
convexity by HWZ).
The fact that f is Hamiltonian relies on: monodromy τ2 is
Hamiltonian, one can symplectically join f to the monodromy, and
H1pD˚S2;Rq “ 0.

Agustin Moreno Universität Heidelberg 24 / 54



Step 2: Fixed-point theory
of Hamiltonian twist maps

Agustin Moreno Universität Heidelberg 25 / 54



{spatial orbits} ÐÑ {interior periodic points}.

(planar problem)

x=f (x)2

f(x)

Goal: Find infinitely many interior periodic points.
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Hamiltonian twist maps

pW , ω “ dλq Liouville domain, α “ λ|B. Let f : pW , ωq Ñ pW , ωq be a
Hamiltonian symplectomorphism.

Definition
f is a Hamiltonian twist map if there exists a time-dependent
Hamiltonian H : RˆW Ñ R such that:

H is smooth (or C2);
f “ φ1

H ;
There exists a smooth function h : Rˆ B Ñ R which is positive
and

XHt |B “ htRα.

Agustin Moreno Universität Heidelberg 27 / 54



Index growth

We call a strict contact manifold pY , ξ “ kerαq strongly index-definite
if the contact structure pξ,dαq admits a symplectic trivialization ε so
that:

There are constants c ą 0 and d P R such that for every Reeb
chord γ : r0,T s Ñ Y of Reeb action T “

şT
0 γ

˚α we have

|µRSpγ; εq| ě cT ` d ,

where µRS is the Robbin–Salamon index.

Drop absolute value ù index-positive.

Agustin Moreno Universität Heidelberg 28 / 54



Examples

Lemma (Some examples)

If pY , αq Ă R4 is a strictly convex hypersurface, then it is strongly
index-positive.
If pY , kerαq “ pS˚Q, ξstdq is symplectically trivial and pQ,gq has
positive sectional curvature, then pY , αq is strongly index-positive.

Agustin Moreno Universität Heidelberg 29 / 54



Fixed-point theorem

Theorem (M.–van Koert, Generalized Poincaré–Birkhoff
theorem)

Suppose that f is an exact symplectomorphism of a Liouville domain
pW , λq, and let α “ λ|B. Assume the following:

(Twist condition) f is a Hamiltonian twist map;
(index-definiteness) If dim W ě 4, then assume
c1pW q|π2pW q “ 0, and pBW , αq is strongly index-definite. In
addition, assume all fixed points of f are isolated;
(Symplectic homology) SH‚pW q is infinite dimensional.

Then f has simple interior periodic points of arbitrarily large (integer)
period.
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Special case of fixed-point theorem

Theorem (M.–van Koert, special case)

Let W Ă pT ˚M, λcanq be fiber-wise star-shaped, with M simply
connected, orientable and closed. Let f : W Ñ W be a Hamiltonian
twist map. Assume:

Reeb flow on BW is index-positive; and
All fixed points of f are isolated.

Then f has simple interior periodic points of arbitrarily large period.

Agustin Moreno Universität Heidelberg 31 / 54



Non-examples: Katok examples

There are examples of (non-reversible) Finsler metrics on Sn with only
finitely many simple geodesics, which are perturbations of the round
metric (and so close to the Kepler problem).

The return maps are Hamiltonian and satisfy all conditions of the the-
orem, except the Hamiltonian twist condition (as a consequence of the
above theorem).
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Toy example: smoothness is relevant

Q “ Sn with round metric.

H : T ˚Q Ñ R, Hpq,pq “ 2π|p| not smooth at zero section. Then
φ1

H “ id , all orbits are periodic with same period.

Let K “ 2πg, with g “ gp|p|q smoothing of |p| near p “ 0. Then
φ1

K “ φ
2πg1p|p|q
G , where φt

G geodesic flow, is a Hamiltonian twist map.
It has simple orbits of arbitrary period (g1p|p|q “ l{k coprime ù k -
periodic orbit).

p

g
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Idea of the proof

Extend a generating Hamiltonian to an ε-collar neighbourhood via a
Taylor expansion, so it becomes admissible for SH. If f̂ time-1 map,
then twist condition implies

lim
k

HF‚ppf k q “ SH‚pW q

is infinite-dimensional. So, many fixed points of f k for k large.

Contributions near the boundary escape any index window due to
index–definiteness, and so fixed points are those of f . Iterating the
same points is ruled out by grading considerations, using the linear
growth of the mean index. Degeneracies are dealt with via local Floer
homology.
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A few remarks

If dim W “ 2, dim SH‚pW q “ 8 iff W ‰ D2.

A higher-dimensional generalization of the classical
Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture.
We couldn’t check the twist condition in the three-body problem.
The boundary degeneracy of the symplectic form needs to be
addressed.
This opens up an completely unexplored line of research:
Hamiltonian dynamics on higher-dimensional Liouville domains.
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Hamiltonian dynamics on Liouville domains

Natural higher-dimensional analogue of dynamics on surfaces.

Con-
crete starting question:

Q. If f : W Ñ W Hamiltonian map on an open Liouville domain, does it
have periodic points? How many? Are there obstructions of f and/or
W?

Analogue results in dimension 2: Brouwer translation theorem (open
disk) and a theorem of Franks (open annulus).

Note: Morrison contructs a Hmailtonian map on B2n, n ě 2, with no
interior fixed points.

There is a fascinating interplay between interior and boundary phe-
nomena.
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Pseudo-holomorphic
foliations
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Lefschetz fibration

x x

Birkhoff annulus

"opposite" Birkhoff annulus

central fiber

S2
D*S2

T*S = LF(T*S,τ )2

direct circular
 orbit

retrograde circular
 orbit

RP = OB(D*S ,τ ) 3

21

t

t

Liou
ville 

direc
tion

geodesic
 flow

21

vanishing 
cyclevanishing 

cycle

Lagrangian thimbleLagrangian thimble

π

P

P

Topological observation: The section D˚S2 admits a Lefschetz fibration
with annuli fibers.
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Leaf space is S3

D2

S3

S1

RP3D*S1
2D*S

The moduli space of fibers (i.e. the leaf space) is S3 “ OBpD2,1q.
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Pseudo-holomorphic foliations in the 3BC

Let α “ αµ,c contact form giving the 3BP. We say that pµ, cq lie in the
convexity range if the Levi–Civita regularization of planar problem is a
convex S3 Ă R4.

Theorem (M.)
If pµ, cq in the convexity range, there is a pseudo-holomorphic foliation
on the level set S˚S3 near the Earth or Moon, such that ω “ dα is an
area form on each annuli.

As the return map f : D˚S2 Ñ D˚S2 preserves ω, it sends a sym-
plectic annulus to another symplectic annulus with the same boundary
(direct/retrograde planar orbits), and same symplectic area (the sum
of the period of these orbits). The adapted open book at the planar
problem is given by Hrynewicz–Salomão–Wysocki.
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Return map

fD f(D)

P P

L

L L=f(L)

L=f(L)
The return map f in general does not preserve the foliation.
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Contact structures and Reeb dynamics on moduli
pM, ξMq “ OBpP, φq an iterated planar 5-fold, i.e. P “ LFpF , φF q has a
4D Lefschetz fibration with genus zero fibers.

ReebpP, φq “ tα adapted contact form: α|B adapted to B “ OBpF , φF qu.

Theorem (M., Contact structures and Reeb dynamics on moduli)

There is a moduli space M of holomorphic annuli foliating M, forming
the fibers of a Lefschetz fibration on each page. It is a contact
manifold pM, ξMq – pS3, ξstdq “ OBpD2,1q.

Any α P ReebpP, φq induces a contact form αM P ReebpD2,1q,
kerαM “ ξM.

Fiberwise integration:

pαMqupvq “
ż

u
αzpvpzqqdz,

with dz “ dα|u, ξM corresponds to a symplectic connection on each
page of M.
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Integrable case µ “ 0.

x x

x

S2
D*S2

direct circular
     orbit

retrograde circular
        orbit

t

t

T(c)

T(c-L  )max

T(c-L  )min

T(c)
T(c)

dir

ret

x

If µ “ 0 ù f -invariant foliation, f is a classical twist map on the fibers with
variable rotation angle T pK q “ π

2p´K q3{2 (Kepler’s 3rd law), and the nodal
Lefschetz singularities are fixed points (the polar orbits).

What happens when we perturb, i.e. µ „ 0? How does the dynamics
interact with the foliation?
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The shadowing cone

D2

RP3

S3

S1

Cα

D*S

ker(d θ ) 

R
α

M

M Mξ =ker(α )

MMP =

C

2D*S

1

The shadowing cone is obtained by projecting the flow. Orbits of the flow
project to orbits of the cone.
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Holomorphic shadow

The holomorphic shadow map is obtained by taking the shadow:

HS : ReebpD˚S2, τ2q Ñ ReebpD2,1q

α ÞÑ αM.

Theorem (M., Reeb lifting theorem)
HS is surjective.

In other words, Reeb dynamics in S2 ˆ S3 is at least as “complex” as Reeb
dynamics in S3 (i.e. highly complicated). I.e.:

“Spatial problem is at least as complicated as planar problem”.

New program: Try to “lift” knowledge from dynamics on S3.
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Case of three-body problem

If pµ, cq in convexity range, combining our adapted open book with
[HSW] on B “ RP3 ù αµ,c P ReebpD˚S2, τ2q.

Hopf flow

HS

μ

Reeb(LF(D*S,τ ),τ )P
1 2 2

2D*S

μ=0 μ=1

c

H(L ( ))1 μ

μ=1/2

c=-3/2 c=-3/2

c=- 8

Kepler
problem

rotating
 Kepler
problem

convexity 
range

"integrable" fiber

Reeb(D , )2 1
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Dynamical applications

Definition
Let P be a page, and f : intpPq Ñ intpPq a return map. A fiber-wise
k -recurrent point is x P intpPq such that f k pMxq XMx ‰ H.

This is a “symplectic version” of a leaf-wise intersection.

Theorem (M.)
In the SCR3BP, for every k, one can find sufficently small
perturbations of the integrable cases which admit infinitely many
fiber-wise k-recurrent points.
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Idea of proof: symplectic tomographies

fD

D

f(D)

P P

P P

L

L L=f(L)

L=f(L)

0 0f
We induce maps fD : intpD2q Ñ intpD2q for every symplectic disk section of
the LF. These are the identity for the integrable case. These preserve area for
near integrable cases, and hence Brouwer applies.
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Thank you!
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