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Computation of RSFT invariants

Goal: Compute the RSFT invariants (e.g. APT,P) for contact
manifolds.

Two methods:
1 Computing directly, requiring knowledge of holomorphic curves,

e.g. many examples in Agustin’s talk.
2 Using (functorial) properties, e.g. APT,P are functors from Con to

N Y t8u.

Two more functorial properties in this talk:
1 Behavior of APT,P in strong cobordisms.
2 Curves with constraints in exact cobordisms, typically cobordisms

from contact p`1q surgeries.
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Main theorems–strong cobordisms

Theorem (Moreno-Z. ’23)
Let W be a strong cobordism from Y´ to Y`, if APTpY`q ă 8, then
APTpY´q ă 8.

Remark
The vanishing of the contact Ozsváth-Szabó invariant behaves in a
similar way.

Remark
The analogous statement for P is not so neat and will appear later.
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Main theorems–surgery cobordisms

Theorem (Z. 23)
Let Y :“ BpV ˆ Dq and Λ a Legendrian sphere, if
rΛs ‰ 0 P H˚pV ˆ D;Qq, then YΛ` obtained from a contact p`1q

surgery along Λ has vanishing contact homology.

Corollary
Let S Ă V be a Lagrangian sphere such that rSs ‰ 0 P H˚pV ;Qq, then
OBpV , ϕ´1

DSq has vanishing contact homology, where ϕDS is a
Dehn-Seidel twist.

Corollary (Bourgeois and van Koert)
Overtwisted contact manifolds have vanishing contact homology.
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Main theorems–the combination

Latschev and Wendl found contact 3-folds with algebraic torsion k for
any k using planar torsion, and conjectured about the higher dimen-
sional case.

Theorem (Z. in progress)
For any k P N, there exist spinal open books with a planar vertebra in
any dimension ě 5, such that the algebraic planar torsion is k. Same
for algebraic torsion if dim ě 7 assuming the foundation of full SFT as
IBL8 algebra is established to the level of current contact homology.

Remark
Our curve mechanism is different, as our curves are from the
vertebra/spine, while curves in planar torsion are from "pages".
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Functoriality in strong
cobordisms



Strong cobordism
Y is Weinstein cobordant to an OT 3-fold, then Y is OT (Colin,
Wand);
If Y has planar torsion, then Y is strongly cobordant to an OT
3-fold (Wendl).

§ APT,AT are not functorial for strong cobordisms.

The usual functoriality fails:

W

T
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Maurer-Cartan elements of BL8 algebras

Definition (MC elements)

mc P SV of degree 0, s.t. pppemcq “ 0, where emc “
ř8

i“1
dimc

i! P EV .

W

T T T T

Counting rational holomorphic curves without positive punctures in a
strong cobordism W ñ a MC element mcW .
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Deformation by MC elements

Given a MC element mc,

pk ,l
mcpv1 . . . vk q :“ π1,l ˝ pppv1 d . . . d vk d emcq

A component of p1,7
mc



Functoriality in strong cobordisms

Given a strong cobordism W from Y´ to Y´, rational curves in
W ñ a BL8 morphism from pV`,p`q to pV´,p´,mcW q.

APTpV´,p´,mcW q ď APTpV`,p`q.

id d emcW is a chain map from pEV´, pp´,mcW q to pEV´, pp´q.

APTpV´,p´,mcW q ă `8 ñ 1 “ 0 P H˚pEV´, pp´q, i.e. 1 “ pp´pvq

Assign qγ with weight
ş

γ˚α and T with weight 1, then pp preserves
the weight, hence pp´pv0q “ 1, where v0 is the weight 0 part of v .
inft

ş

γ˚αu ą 0 ñ v0 P EkV , i.e.

APTpV`,p`q ă `8 ñ APTpV´,p´q ă `8
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The case for P

Theorem (Moreno-Z. 23)
PpY 1q ă 8 s.t. contributing curves “do not depend on augmentations"
(e.g. examples in Agustin’s talk). If D strong cobordism from Y to Y 1,

PpY q ă `8.

Remark
The definition of P requires enumerating through all augmentations ñ

the extra assumption.

Corollary
For g ě 1, d ą 2g ´ 2, the prequantization bundle over Σg with degree
´d is not cofillable and has no strong cobordism to pS3, ξstd q.
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Producing algebraic
overtwisted contact

manifolds



Overtwisted contact sphere

ϕDS P π0pSympcpD˚Snqq: the Dehn-Seidel twist;
pS2n`1, ξotq “ OBpD˚Sn, ϕ´1

DSq: the homotopically standard OT
sphere.

Bourgeois and van Koert showed that, with a suitable contact form and
a.c.s., there is a simple Reeb orbit γ winding around the binding once,
such that

BCHpqγq “ 1,

where the holomorphic disk is a “lift" of the natural disk in the binding
region.

Via contact connected sum,

CHpS2n`1, ξotq “ 0 ñ CHpYotq “ 0.
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Contact p`1q surgeries
ř

p´xiBxi ` 2yiByi q is a Liouville v.f. on pDn
x ˆ Dn

y ,
ř

dxi ^ dyiq;

Both Sn´1
x ˆ t0u and t0u ˆ Sn´1

y are Legendrians bounding
Lagrangian disks Dn

x ˆ t0u and t0u ˆ Dn
y ;

Gluing a nbhd of a Legendrian sphere Λ with a nbhd of
Sn´1

x ˆ t0u, t0u ˆ Sn´1
y is called a ´1{ ` 1 contact surgery, the

new contact boundary is YΛ´{YΛ` .

Fact: pS2n`1, ξotq is obtained from applying a p`1q surgery to
BpD˚Sn ˆ Dq “ OBpD˚Sn, idq along the Legendrian lift of the
zero section Sn Ă D˚Sn.
´1{ ` 1 surgeries ô adding positive/negative twists.
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No fillings from symplectic cohomology

Symplectic fillings of Y :“ BpV ˆ Dq have strong unique properties
(Eliashberg-Floer-McDuff,Oancea-Viterbo,Barth-Geiges-
Zehmisch,Z.);
For any strong filling W of Y , Dx P SH˚

`pW q such that δBpxq “ α,
where α P H˚pV ˆ Dq Ñ H˚pY q;

SH˚
`pW q

δ
��

δB // H˚`1pY q

H˚`1pW q

88

ñ pS2n`1, ξotq has no strong filling.
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From the obstructing curve to the vanishing of CH
The “uniqueness" of filling is from

1 Any closed submanifold S Ă Y such that xα, rSsy ‰ 0, there exist
solutions to

u : C Ñ RˆY , Bsu`JpBtu´XHq “ 0, lim
sÑ8

u “ x ,up0q P t0uˆS.

2 Non-existence of various curves with negative punctures.

WΛ: the surgery cobordism from YΛ` to Y ;
L: the Lagrangian disk filling of Λ in WΛ;

By considering holomorphic curves in WΛ with a point constraint on L
and negative punctures, we have

Theorem (Z. 23)
Assume Λ a Legendrian sphere such that rΛs does not vanish in
H˚pV ˆ D;Qq, then CHpYΛ`q “ 0.
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Functorial explanation

Motivated by the work of Bourgeois and Oancea,
try to define SH` for a contact manifold, the compactification of
"

u : R ˆ S1 Ñ pY , Bsu ` JpBtu ´ XHq “ 0, lim
sÑ˘8

u “ x{y
*

{R

has SFT buildings on the lower level.

The count of Floer cylinders with negative punctures defines a
CC˚pY q-DGA-module on C´˚

` pHq b CC˚pY q.
The count of Floer cylinders with constraint in t0u ˆ Y with
negative punctures defines a DGA-module map

C´˚
` pHq b CC˚pY q Ñ C´˚`1pY q b CC˚pY q
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Functorial explanation
Given an exact cobordism W from Y´ to Y`, by considering holomor-
phic curves in xW with constraints, we get a DGA-module map

C´˚
` pHq b CC˚pY`q Ñ C´˚`1pW ,Y´q b CC˚pY´q

such that the following

C´˚
` pHq b CC˚pY`q

��

// C´˚`1pY`q b CC˚pY`q

��

C´˚`1pW ,Y´q b CC˚pY´q // C´˚`1pY`q b CC˚pY´q

is commutative on homology.

For Y` “ BpV ˆ Dq, Dx P C´˚
` pHq such that x b 1 is mapped to

α b 1, for α P ImpH˚pV ˆ Dq Ñ H˚pY`qq.

ñ CHpYΛ`q “ 0, as α R ImpH˚pWΛ,YΛ`q Ñ H˚pY qq for the
surgery cobordism WΛ
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Producing algebraic
(planar) torsions



Spinal open books

Open book OBpV , ϕq “ pBV ˆ Dq Y Vϕ
DÑΣ
ù spinal open books

(Lisi, Van Horn-Morris, Wendl);
§ spine region: BV ˆ Σ,
§ paper region: YVϕ.

SOBpV , ϕ1, . . . , ϕk q is the spinal OB with page V , vertebra S2 with
k disks removed (“ Σ0,k ), ϕ1, . . . , ϕk are the monodromy, i.e.

SOBpV , ϕ1, . . . , ϕk q “ pBVt ˆ Σ0,k q Yk
i“1 Vϕi

It has a natural map to Σ0,k .

Theorem (Z. in progress)

Let V be the Brieskorn variety za0
0 ` . . . ` zan

n “ 1 for ai " 0, then APT
and AT (dim ě 7) of SOBpV , ϕ1, . . . , ϕk q are k ´ 1, where ϕi are
products of negative DS twists with at least one non-trivial.
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Lower bound for torsion

Reeb dynamics on SOBpV , ϕ1, . . . , ϕk q:
Reeb orbits in the paper region, non-trivial homology class (after
mapping to Σ0,k ).

Reeb orbits in the spine region, the Conley-Zehnder indices ! 0 if
an " 0.

Then by virtual dimension computation and homology classes, we
have

APT,AT ě k ´ 1.
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Upper bound for torsion

Applying contact p´1q surgeries to cancel the negative twist until
only one negative twist is left;

Capping off using V ˆ D (e.g. the symplectic embedding of
V ˆ T ˚S1 Ă V ˆ D).

We can get a strong cobordism from SOBpV , ϕ1, . . . , ϕk q to OBpV , ϕ´1
DSq,

which has k ´ 1 copies V as symplectic hypersurfaces which make the
cobordism non-exact. By the first two theorems,

APT is finite.

Remark
This also produces tight not weakly fillable contact manifolds in
dimension ě 5.
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Remark
This also produces tight not weakly fillable contact manifolds in
dimension ě 5.



Upper bound for torsion

To get a precise bound:
If the vanishing of contact homology for OBpV , ϕ´1

DSq comes from
holomorphic curves intersecting the binding at most once, since
Maurer-Cartan elements have positive intersections with the k ´ 1
hypersurfaces, one can conclude that APT ď k ´ 1(This is the
case for pS2n`1, ξotq).

APT “ k ´ 1 follows from combining the p`1q-surgery cobordism
and the strong cobordism, i.e. looking at holomorphic curves in
the strong cobordism from SOBpV , ϕ1, . . . , ϕk q to OBpV , idq with a
constraint on the Lagrangian disk in the p`1q-surgery cobordism.
Similar arguments apply to AT.
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the strong cobordism from SOBpV , ϕ1, . . . , ϕk q to OBpV , idq with a
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Thank you!


