A landscape of contact manifolds via rational SFT

Agustin Moreno Universität Heidelberg

SFT X, Berlin

J.w. Zhengyi Zhou (Morningside Center, Beijing)

Goal: Study the category of contact manifolds.

Goal: Study the category of contact manifolds.

 \mathfrak{Con}_S = category with:

- Ob(𝔅塗𝑘𝔅) = contact manifolds.
- Mor_{con_S}((M₋, ξ₋), (M₊, ξ₊)) = strong symplectic cobordisms from M₋ to M₊.

Monoidal structure: $(M_1, \xi_1) \otimes (M_2, \xi_2) = (M_1, \xi_1) \sqcup (M_2, \xi_2)$.

Goal: Study the *category* of contact manifolds.

 \mathfrak{Con}_S = category with:

- Ob(𝔅塗𝑘𝔅) = contact manifolds.
- Mor_{con_S}((M₋, ξ₋), (M₊, ξ₊)) = strong symplectic cobordisms from M₋ to M₊.

Monoidal structure: $(M_1, \xi_1) \otimes (M_2, \xi_2) = (M_1, \xi_1) \sqcup (M_2, \xi_2)$.

 \mathfrak{Con} = subcategory with same objects, but morphisms are *exact* symplectic cobordisms.

To study Con, we will study functors from Con to other categories.

Goal: Study the *category* of contact manifolds.

 \mathfrak{Con}_S = category with:

- Ob(𝔅塗𝑘𝔅) = contact manifolds.
- Mor_{con_S}((M₋, ξ₋), (M₊, ξ₊)) = strong symplectic cobordisms from M₋ to M₊.

Monoidal structure: $(M_1, \xi_1) \otimes (M_2, \xi_2) = (M_1, \xi_1) \sqcup (M_2, \xi_2)$.

 \mathfrak{Con} = subcategory with same objects, but morphisms are *exact* symplectic cobordisms.

To study Con, we will study functors from Con to other categories.

- In this talk: cobordisms are exact.
- In Zhengyi's talk: cobordisms are strong.

Main theorem

Theorem (M. – Zhou '20)

There exists a covariant, monoidal complexity/hierarchy functor

 $H_{cx}:\mathfrak{Con}\to\mathcal{H}$

to a totally ordered category

$$\mathcal{H} = \{\underbrace{0^{APT} < 1^{APT} < \ldots < \infty^{APT}}_{0^{P}} < \underbrace{0^{SD} < 1^{SD} < \ldots < \infty^{SD}}_{1^{P}}$$

• Functoriality: $M_{-} \rightarrow M_{+}$ cobordism $\rightsquigarrow H_{cx}(M_{-}) \leq H_{cx}(M_{+})$.

- Monodial structure on H:
 - $a^{\mathsf{P}} \otimes 0^{\mathsf{P}} = 0^{\mathsf{P}}, a^{\mathsf{P}} \otimes b^{\mathsf{P}} = \max\{a^{\mathsf{P}}, b^{\mathsf{P}}\}.$
 - $a^{\text{APT}} \otimes b^{\text{APT}} = \min\{a^{\text{APT}}, b^{\text{APT}}\}.$
 - $a^{\text{SD}} \otimes b^{\text{SD}} = \max\{a^{\text{SD}}, b^{\text{SD}}\}.$

Intuitively, $H_{cx}(M, \xi) =$ *"complexity"* of (M, ξ) .

Intuitively, $H_{cx}(M, \xi) =$ *"complexity"* of (M, ξ) .

- P = planarity^a
- APT = algebraic planar torsion.
- SD = order of semi-dilation.

^{*a*}Ganatra–Siegel define a similar notion $\mathbb{G}\langle p \rangle$ but for *Liouville domains*.

Intuitively, $H_{cx}(M, \xi) =$ *"complexity"* of (M, ξ) .

- P = planarity^a
- APT = algebraic planar torsion.
- SD = order of semi-dilation.

^aGanatra–Siegel define a similar notion $\mathbb{G}\langle p \rangle$ but for *Liouville domains*.

Main tool: Rational (genus zero) symplectic field theory.

- P counts rational curves with a point constraint in symplectizations.
- APT counts rational curves with no negative punctures. Inspired by *algebraic torsion* (Latschev–Wendl).
- SD is defined via the Q[u]-module structure on linearized contact homology (Bourgeois–Oancea).

Theorem (M. – Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.

Theorem (M. – Zhou '20)

- 1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.
- 2. If Y is overtwisted then APT(Y) = 0.

Theorem (M. – Zhou '20)

- 1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.
- 2. If Y is overtwisted then APT(Y) = 0.
- 3. If Y has Giroux torsion [Giroux, MNW], then $APT(Y) \leq 1$.

Theorem (M. – Zhou '20)

- 1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.
- 2. If Y is overtwisted then APT(Y) = 0.
- 3. If Y has Giroux torsion [Giroux, MNW], then $APT(Y) \leq 1$.
- 4. If $APT(Y) < \infty$, then Y is not strongly fillable. If Y admits an exact filling then $P(Y) \ge 1$.

Theorem (M. – Zhou '20)

- 1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.
- 2. If Y is overtwisted then APT(Y) = 0.
- 3. If Y has Giroux torsion [Giroux, MNW], then $APT(Y) \leq 1$.
- 4. If $APT(Y) < \infty$, then Y is not strongly fillable. If Y admits an exact filling then $P(Y) \ge 1$.
- 5. If Y is an iterated planar open book [Acu] where the initial page has k-punctures, then $P(Y) \le k$.

Theorem (M. – Zhou '20)

- 1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.
- 2. If Y is overtwisted then APT(Y) = 0.
- 3. If Y has Giroux torsion [Giroux, MNW], then $APT(Y) \leq 1$.
- 4. If $APT(Y) < \infty$, then Y is not strongly fillable. If Y admits an exact filling then $P(Y) \ge 1$.
- 5. If Y is an iterated planar open book [Acu] where the initial page has k-punctures, then $P(Y) \le k$.
- 6. If Y has an exact filling that is not k-uniruled [McLean], then $P(Y) \ge k + 1$.

Theorem (M. – Zhou '20)

- 1. If Y has planar k-torsion [Wendl], then $APT(Y) \leq k$.
- 2. If Y is overtwisted then APT(Y) = 0.
- 3. If Y has Giroux torsion [Giroux, MNW], then $APT(Y) \leq 1$.
- 4. If $APT(Y) < \infty$, then Y is not strongly fillable. If Y admits an exact filling then $P(Y) \ge 1$.
- 5. If Y is an iterated planar open book [Acu] where the initial page has k-punctures, then $P(Y) \le k$.
- 6. If Y has an exact filling that is not k-uniruled [McLean], then $P(Y) \ge k + 1$.
- APT, SD, P are all surjective. In particular, P is surjective in all fixed odd dimension ≥ 3.

Dynamics: Weinstein conjecture

Theorem (M. – Zhou '20)

If $P(Y) < \infty$, then Y satisfies the Weinstein conjecture.

In other words, counterexamples to the Weinstein conjecture (if any) are *maximally complex*.

Examples

Theorem (M. – Zhou)

Let D_k be k generic hyperplanes in $\mathbb{C}P^n$ for $n \ge 2$, then we have the following.

1. $k - 1 \ge P(\partial D_k^c) \ge k + 1 - n$ for k > n + 1. 2. $P(\partial D_k^c) = k + 1 - n$ for $n + 1 < k < \frac{3n - 1}{2}$ and n odd. 3. $P(\partial D_k^c) = 2$ for k = n + 1. 4. $H_{cx}(\partial D_k^c) = 0^{SD}$ for $k \le n$.

Theorem (M. – Zhou)

Let D_k be k generic hyperplanes in $\mathbb{C}P^n$ for $n \ge 2$, then we have the following.

1. $k - 1 \ge P(\partial D_k^c) \ge k + 1 - n$ for k > n + 1. 2. $P(\partial D_k^c) = k + 1 - n$ for $n + 1 < k < \frac{3n - 1}{2}$ and n odd. 3. $P(\partial D_k^c) = 2$ for k = n + 1. 4. $H_{cx}(\partial D_k^c) = 0^{SD}$ for $k \le n$.

Remarks:

• (1.) obstructs **exact** cobordisms $\partial D_{k+r}^c \rightarrow \partial D_k^c$ for r > n-1, k > n+1; and (2.) obstructs **exact** cobordisms $\partial D_{k+1}^c \rightarrow \partial D_k^c$, for $n+1 < k < \frac{3n-1}{2}$ and *n* odd.

Theorem (M. – Zhou)

Let D_k be k generic hyperplanes in $\mathbb{C}P^n$ for $n \ge 2$, then we have the following.

1. $k - 1 \ge P(\partial D_k^c) \ge k + 1 - n$ for k > n + 1. 2. $P(\partial D_k^c) = k + 1 - n$ for $n + 1 < k < \frac{3n - 1}{2}$ and n odd. 3. $P(\partial D_k^c) = 2$ for k = n + 1. 4. $H_{cx}(\partial D_k^c) = 0^{SD}$ for $k \le n$.

Remarks:

- (1.) obstructs **exact** cobordisms $\partial D_{k+r}^c \rightarrow \partial D_k^c$ for r > n 1, k > n + 1; and (2.) obstructs **exact** cobordisms $\partial D_{k+1}^c \rightarrow \partial D_k^c$, for $n + 1 < k < \frac{3n-1}{2}$ and *n* odd.
- But there is always a **strong** cobordism $\partial D_{k+1}^c \rightarrow \partial D_k^c$.

Theorem (M. – Zhou)

Let D_k be k generic hyperplanes in $\mathbb{C}P^n$ for $n \ge 2$, then we have the following.

1. $k - 1 \ge P(\partial D_k^c) \ge k + 1 - n$ for k > n + 1. 2. $P(\partial D_k^c) = k + 1 - n$ for $n + 1 < k < \frac{3n - 1}{2}$ and n odd. 3. $P(\partial D_k^c) = 2$ for k = n + 1.

4.
$$H_{cx}(\partial D_k^c) = 0^{SD}$$
 for $k \leq n$.

Remarks:

- (1.) obstructs **exact** cobordisms $\partial D_{k+r}^c \to \partial D_k^c$ for r > n-1, k > n+1; and (2.) obstructs **exact** cobordisms $\partial D_{k+1}^c \to \partial D_k^c$, for $n+1 < k < \frac{3n-1}{2}$ and *n* odd.
- But there is always a **strong** cobordism $\partial D_{k+1}^c \rightarrow \partial D_k^c$.
- And there is always an exact cobordism the other way $\partial D_k^c \rightarrow \partial D_{k+1}^c$.

Theorem (M. – Zhou)

Let D_k be k generic hyperplanes in $\mathbb{C}P^n$ for $n \ge 2$, then we have the following.

1. $k - 1 \ge P(\partial D_k^c) \ge k + 1 - n$ for k > n + 1. 2. $P(\partial D_k^c) = k + 1 - n$ for $n + 1 < k < \frac{3n - 1}{2}$ and n odd. 3. $P(\partial D_k^c) = 2$ for k = n + 1. 4. $H_{cx}(\partial D_k^c) = 0^{SD}$ for $k \le n$.

Remarks:

- (1.) obstructs **exact** cobordisms $\partial D_{k+r}^c \rightarrow \partial D_k^c$ for r > n 1, k > n + 1; and (2.) obstructs **exact** cobordisms $\partial D_{k+1}^c \rightarrow \partial D_k^c$, for $n + 1 < k < \frac{3n-1}{2}$ and *n* odd.
- But there is always a strong cobordism $\partial D_{k+1}^c \rightarrow \partial D_k^c$.
- And there is always an exact cobordism the other way $\partial D_k^c \rightarrow \partial D_{k+1}^c$.
- If $k \leq n$, all ∂D_k^c have exact cobordisms both ways.

Algebraic aspects

Rational holomorphic buildings (RxM, d(e^t \alpha))

We wish to capture the combinatorics of boundary degenerations of rational curves into rational holomorphic buildings.

Conventions

 $V = \mathbb{Z}_2$ -graded **k**-v.space. Let $S^j V = V^{\otimes_j}/S_j$, S_j permutation group.

Notation:

- $SV = \bigoplus_{i \ge 0} S^i V$ symmetric algebra (words).
- $\overline{S}V = \bigoplus_{j \ge 1} S^j V$ non-unital symmetric algebra (non-empty words).
- $\overline{B}^k V = \bigoplus_{j=1}^k S^j V$ (non-empty words with at most *k* letters).
- $EV = \overline{S}SV$ (non-empty sentences).
- $E^k V = \bigoplus_{j=1}^k S^j S V \subset EV$ (sentences with at most *k* words).

BL_{∞} algebras

Given linear operators $p^{k,l} : S^k V \to S^l V$ for $k \ge 1, l \ge 0$, we can define a map $\hat{p} : EV \to EV$, most easily described by trees.

 \hat{p} is obtained by summing over all glued trees.

Definition $(V, \hat{\rho})$ is a BL_{∞} -algebra if $|\hat{\rho}| = 1$ and $\hat{\rho}^2 = 0$.

Rational curves

Graphs represent counts of rational holomorphic curves in symplectizations.

■ *BL*_∞-algebras are a genus zero specialization of *IBL*_∞-algebras (Cieliebak–Fukaya–Latschev).

- *BL*_∞-algebras are a genus zero specialization of *IBL*_∞-algebras (Cieliebak–Fukaya–Latschev).
- Assuming p^{k,0} = 0 for all k, then p^{1,1} differential, and on its homology:
 - 1. $p^{2,1}$ Lie bracket;
 - 2. $p^{1,2}$ co-Lie bracket;
 - 3. $p^{1,2} \circ p^{2,1} = 0.$
 - I.e. homology of $p^{1,1}$ is a **bi-Lie algebra**.

- *BL*_∞-algebras are a genus zero specialization of *IBL*_∞-algebras (Cieliebak–Fukaya–Latschev).
- Assuming p^{k,0} = 0 for all k, then p^{1,1} differential, and on its homology:
 - 1. $p^{2,1}$ Lie bracket;
 - 2. $p^{1,2}$ co-Lie bracket;
 - 3. $p^{1,2} \circ p^{2,1} = 0.$

I.e. homology of $p^{1,1}$ is a **bi-Lie algebra**.

Under same assumption, p^{k,1} induces an L_∞ algebra on V (Siegel).

- *BL*_∞-algebras are a genus zero specialization of *IBL*_∞-algebras (Cieliebak–Fukaya–Latschev).
- Assuming p^{k,0} = 0 for all k, then p^{1,1} differential, and on its homology:
 - 1. $p^{2,1}$ Lie bracket;
 - 2. $p^{1,2}$ co-Lie bracket;
 - 3. $p^{1,2} \circ p^{2,1} = 0.$

I.e. homology of $p^{1,1}$ is a **bi-Lie algebra**.

- Under same assumption, p^{k,1} induces an L_∞ algebra on V (Siegel).
- In general, a BL_{∞} algebra (V, \hat{p}) induces an L_{∞} algebra $(SV, \hat{\ell})$.

Morphisms

Given linear maps $\{\phi^{k,l}: S^k V \to S^l V'\}_{k \ge 1, l \ge 0}$, we construct $\hat{\phi}: EV \to EV'$ similarly as before.

Morphism graphs represent counts of rational holomorphic curves in symplectic cobordisms.

Definition

 $\hat{\phi}$ is a BL_{∞} morphism from (V, p) to (V', p') if $\hat{\phi} \circ \hat{p} = \hat{p}' \circ \hat{\phi}$ and $|\hat{\phi}| = 0$.

Augmentations

The zero BL_{∞} algebra **0** has S^k **0** = **k** for all *k* and \hat{p} = 0.

Definition

A BL_{∞} augmentation is a BL_{∞} morphism $\epsilon : (V, \hat{p}) \to \mathbf{0}$, i.e. a family of maps $\epsilon^k : S^k V \to \mathbf{k}$ so that $|\hat{\epsilon}| = 0$ and $\hat{\epsilon} \circ \hat{p} = 0$.

Augmentations

An augmentation algebraically represents counts of rational holomorphic curves with negative ends on a symplectic filling. It still makes sense algebraically if there is no filling.

Torsion Given (V, \hat{p}) BL_{∞} -algebra, the unit

$$\mathbf{1}_{V} \in H_{*}(E^{k}V)$$

is the image of the unit

$$\mathbf{1_0} \in \mathbf{k} = E^1 \mathbf{0} \subset H_*(E^k \mathbf{0}) = E^K \mathbf{0}$$

under the map $H_*(E^k\mathbf{0}) \to H_*(E^kV)$ induced by $\mathbf{0} \to (V, \hat{p})$.

Torsion Given (V, \hat{p}) BL_{∞} -algebra, the unit

 $\mathbf{1}_{V} \in H_{*}(E^{k}V)$

is the image of the unit

$$\mathbf{1_0} \in \mathbf{k} = E^1 \mathbf{0} \subset H_*(E^k \mathbf{0}) = E^K \mathbf{0}$$

under the map $H_*(E^k \mathbf{0}) \to H_*(E^k V)$ induced by $\mathbf{0} \to (V, \hat{p})$.

Definition

The torsion of a BL_{∞} algebra V is

$$T(V) := \min\{k - 1 | 1_V = 0 \in H^*(E^k V), k \ge 1\}.$$

Here the minimum of an empty set is defined to be ∞ .

This is the algebraic counterpart of APT: roughly speaking, it gives the smallest number of positive punctures (minus one) of curves killing the unit in homology.

Functoriality of torsion

 \textit{BL}_{∞} morphisms preserve the sentence length filtration

$$E^1 V \subset E^2 V \subset \ldots$$

Then:

If
$$(V, \hat{p}) \to (V', \hat{p'})$$
 BL_{∞} morphism, we have $T(V) \ge T(V')$.

In particular, if (V, \hat{p}) has an augmentation, then $T(V) = \infty$.

Linearized theory

Given (V, \hat{p}) BL_{∞} -algebra and $\epsilon : (V, \hat{p}) \rightarrow \mathbf{0}$ augmentation,

$$\rightsquigarrow (V, \hat{p}_{\epsilon})$$
 linearized BL_{∞} – algebra, with $p_{\epsilon}^{k,0} = 0$.

A $p_{\epsilon}^{4,1}$ component. In general, to obtain $p_{\epsilon}^{k,l}$, we sum over connected trees with *exactly* one $p^{k',l'}$, and several ϵ^{j} .

Pointed maps and linearizations

Given $p_{\bullet}^{k,l}: S^k V \to S^l V, k \ge 1, l \ge 0$ linear maps, we similarly define $\hat{p}_{\bullet}: EV \to EV$, but now $|\hat{p}_{\bullet}| \ne 1$ in general.

Definition

 $(V, \{p_{\bullet}^{k,l}\})$ is a pointed map for (V, \hat{p}) if $\hat{p}_{\bullet} \circ \hat{p} = (-1)^{|\hat{p}_{\bullet}|} \hat{p} \circ \hat{p}_{\bullet}$.

Pointed maps and linearizations

Given $p_{\bullet}^{k,l}: S^k V \to S^l V, k \ge 1, l \ge 0$ linear maps, we similarly define $\hat{p}_{\bullet}: EV \to EV$, but now $|\hat{p}_{\bullet}| \ne 1$ in general.

Definition

$$(V, \{p_{\bullet}^{k,l}\})$$
 is a pointed map for (V, \hat{p}) if $\hat{p}_{\bullet} \circ \hat{p} = (-1)^{|\hat{p}_{\bullet}|} \hat{p} \circ \hat{p}_{\bullet}$.

Pointed maps represent counts of rational holomorphic curves with one interior marked point constrained on a cycle $Z \in H_*(Y)$.

 $\rightsquigarrow |\hat{p}_{\bullet}| = \deg(Z) \ (= 0 \text{ if } Z = \text{pt}).$

Pointed maps and linearizations

Given $p_{\bullet}^{k,l}: S^k V \to S^l V, k \ge 1, l \ge 0$ linear maps, we similarly define $\hat{p}_{\bullet}: EV \to EV$, but now $|\hat{p}_{\bullet}| \ne 1$ in general.

Definition

$$(V, \{p_{\bullet}^{k,l}\})$$
 is a pointed map for (V, \hat{p}) if $\hat{p}_{\bullet} \circ \hat{p} = (-1)^{|\hat{p}_{\bullet}|} \hat{p} \circ \hat{p}_{\bullet}$.

Pointed maps represent counts of rational holomorphic curves with one interior marked point constrained on a cycle $Z \in H_*(Y)$.

$$\implies |\hat{p}_{\bullet}| = \deg(Z) \ (= 0 \text{ if } Z = \text{pt}).$$

Given a linearization $\epsilon : (V, \hat{p}) \rightarrow 0$,

 $\hat{p}_{\bullet} \rightsquigarrow \hat{p}_{\bullet,\epsilon}$ linearized pointed map for (V, \hat{p}_{ϵ}) . But $p_{\bullet,\epsilon}^{k,0} \neq 0$ in general.

Order

Let $\ell_{\epsilon}^{k} = p_{\epsilon}^{k,1} \rightsquigarrow \hat{\ell}_{\epsilon}$ (an L_{∞} structure on V[-1]). We get a chain map $\hat{\ell}_{\bullet,\epsilon} = \sum_{k \ge 1} p_{\bullet,\epsilon}^{k,0} : (\overline{S}V, \hat{\ell}_{\epsilon}) \to \mathbf{k}.$

Definition

The $(\epsilon, \hat{p}_{\bullet})$ -order of (V, \hat{p}) is

$$O(V,\epsilon,\widehat{p}_{\bullet}) := \min\left\{k : 1 \in \operatorname{Im} \widehat{\ell}_{\bullet,\epsilon}|_{H_{\ast}(\overline{B}^{k}V,\widehat{\ell}_{\epsilon})}\right\},\$$

where the minimum of an empty set is defined to be ∞ .

This is the algebraic counterpart to planarity: roughly speaking, it gives the smallest number of positive punctures of a point-constrained curve hitting the unit in \mathbf{k} .

Functoriality of order

Given:

- BL_{∞} morphism $\widehat{\phi} : (V, \widehat{p}) \to (V', \widehat{q});$
- maps $\phi_{\bullet}^{k,l} : S^k V \to S^l V'$.
- $\rightsquigarrow \hat{\phi}_{\bullet}: EV \rightarrow EV'$ via graphs.
 - *p̂*_●, *q̂*_● are two pointed maps for (*V*, *p̂*), (*V'*, *q̂*) respectively, of the same degree.

Definition

We say $\hat{p}_{\bullet}, \hat{q}_{\bullet}, \hat{\phi}$ are **compatible**, if there are $\phi_{\bullet}^{k,l}$ such that

$$\hat{\boldsymbol{q}}_{\bullet} \circ \hat{\boldsymbol{\phi}} - (-1)^{|\hat{\boldsymbol{q}}_{\bullet}|} \hat{\boldsymbol{\phi}} \circ \hat{\boldsymbol{p}}_{\bullet} = \hat{\boldsymbol{q}} \circ \hat{\boldsymbol{\phi}}_{\bullet} - (-1)^{|\hat{\boldsymbol{\phi}}_{\bullet}|} \hat{\boldsymbol{\phi}}_{\bullet} \circ \hat{\boldsymbol{p}}$$

and $|\hat{\phi}_{\bullet}| = |\hat{p}_{\bullet}| + 1$.

Functoriality of order

Assume $\hat{p}_{\bullet}, \hat{q}_{\bullet}, \hat{\phi}$ are compatible and $|\hat{p}_{\bullet}| = |\hat{q}_{\bullet}| = 0$. Then:

For any BL_{∞} augmentation ϵ of V', we have

$$O(V, \epsilon \circ \hat{\phi}, \hat{p}_{\bullet}) \ge O(V', \epsilon, \hat{q}_{\bullet}).$$

Geometric aspects

- (Y^{2n-1}, α) strict contact manifold. $\Lambda =$ Novikov field.
 - V_{α} = free Λ -module generated by (good) Reeb orbits.

- V_{α} = free Λ -module generated by (good) Reeb orbits.
- $CHA(Y) = SV_{\alpha}$ contact homology algebra.

- V_{α} = free Λ -module generated by (good) Reeb orbits.
- $CHA(Y) = SV_{\alpha}$ contact homology algebra.
- γ orbit \rightsquigarrow generator $q_{\gamma}, |q_{\gamma}| = \mu_{CZ}(\gamma) + n 3 \mod 2$.

- V_{α} = free Λ -module generated by (good) Reeb orbits.
- $CHA(Y) = SV_{\alpha}$ contact homology algebra.
- γ orbit \rightsquigarrow generator $q_{\gamma}, |q_{\gamma}| = \mu_{CZ}(\gamma) + n 3 \mod 2$.

•
$$\Gamma = \{\underbrace{\eta_1, \ldots, \eta_1}_{i_1}, \ldots, \underbrace{\eta_m, \ldots, \eta_m}_{i_m}\}$$
 ordered orbit set, $\eta_i \neq \eta_j, i \neq j$,
 $\sum i_j = I =: |\Gamma|.$

- V_{α} = free Λ -module generated by (good) Reeb orbits.
- $CHA(Y) = SV_{\alpha}$ contact homology algebra.
- γ orbit \rightsquigarrow generator $q_{\gamma}, |q_{\gamma}| = \mu_{CZ}(\gamma) + n 3 \mod 2$.
- $\Gamma = \{\underbrace{\eta_1, \ldots, \eta_1}_{i_1}, \ldots, \underbrace{\eta_m, \ldots, \eta_m}_{i_m}\}$ ordered orbit set, $\eta_i \neq \eta_j, i \neq j$, $\sum i_j = I =: |\Gamma|.$ • $\mu_{\Gamma} = i_1! \ldots i_m!, \kappa_{\Gamma} = \kappa_{\eta_1}^{i_1} \ldots \kappa_{\eta_m}^{i_m}$ product of multiplicities, and $q^{\Gamma} =$
- $q_{\eta_1}^{i_1} \dots q_{\eta_m}^{i_m}$.

 $\overline{\mathcal{M}}_{Y,A}(\Gamma^+,\Gamma^-) = \text{compactified moduli space of rational curves in } \mathbb{R} \times Y$ asymptotic to Γ^{\pm} in homology class $A \in H_2(Y,\Gamma^- \cup \Gamma^+)$.

$$p^{k,l}(q^{\Gamma^+}) = \sum_{|\Gamma^-|=l} \# \overline{\mathcal{M}}_{Y,\mathcal{A}}(\Gamma^+,\Gamma^-) \frac{T^{\int_{\mathcal{A}} d\alpha}}{\mu_{\Gamma^+} \mu_{\Gamma^-} \kappa_{\Gamma^-}} q^{\Gamma^-}.$$

 $\overline{\mathcal{M}}_{Y,A}(\Gamma^+,\Gamma^-) = \text{compactified moduli space of rational curves in } \mathbb{R} \times Y$ asymptotic to Γ^{\pm} in homology class $A \in H_2(Y,\Gamma^- \cup \Gamma^+)$.

$$p^{k,l}(q^{\Gamma^+}) = \sum_{|\Gamma^-|=l} \# \overline{\mathcal{M}}_{Y,\mathcal{A}}(\Gamma^+,\Gamma^-) \frac{T^{\int_{\mathcal{A}} d\alpha}}{\mu_{\Gamma^+} \mu_{\Gamma^-} \kappa_{\Gamma^-}} q^{\Gamma^-}.$$

Fix a point *o* in *Y*, $\overline{\mathcal{M}}_{Y,A,o}(\Gamma^+,\Gamma^-)$ = rational curves passing through *o*.

$$p_{\bullet}^{k,l}(q^{\Gamma^+}) = \sum_{|\Gamma^-|=l} \# \overline{\mathcal{M}}_{Y,\mathcal{A},o}(\Gamma^+,\Gamma^-) \frac{T^{\int_{\mathcal{A}} d\alpha}}{\mu_{\Gamma^+} \mu_{\Gamma^-} \kappa_{\Gamma^-}} q^{\Gamma^-}.$$

 $(X, \omega = d\lambda)$ exact cobordism from (Y_{-}, α_{-}) to (Y_{+}, α_{+}) .

$$\phi^{k,l}(\boldsymbol{q}^{\Gamma^+}) = \sum_{|\Gamma^-|=l} \# \overline{\mathcal{M}}_{X,\mathcal{A}}(\Gamma^+,\Gamma^-) \frac{T^{\int_{\mathcal{A}} \omega}}{\mu_{\Gamma^+} \mu_{\Gamma^-} \kappa_{\Gamma^-}} \boldsymbol{q}^{\Gamma^-}.$$

If $Y_{-} = \emptyset$, i.e. X filling, define $\epsilon^{k} = \phi^{k,0}$ as linearization.

 $(\mathbf{X}, \omega = \mathbf{d}\lambda)$ exact cobordism from $(\mathbf{Y}_{-}, \alpha_{-})$ to $(\mathbf{Y}_{+}, \alpha_{+})$.

$$\phi^{k,l}(\boldsymbol{q}^{\Gamma^+}) = \sum_{|\Gamma^-|=l} \# \overline{\mathcal{M}}_{X,\mathcal{A}}(\Gamma^+,\Gamma^-) \frac{T^{\int_{\mathcal{A}} \omega}}{\mu_{\Gamma^+} \mu_{\Gamma^-} \kappa_{\Gamma^-}} \boldsymbol{q}^{\Gamma^-}.$$

If $Y_{-} = \emptyset$, i.e. X filling, define $\epsilon^{k} = \phi^{k,0}$ as linearization.

Fix points o_{\pm} in Y_{\pm} , and a curve γ in X joining them, $\overline{\mathcal{M}}_{X,\mathcal{A},\gamma}(\Gamma^+,\Gamma^-) =$ moduli of curves in X passing through γ .

$$\phi_{\bullet}^{k,l}(q^{\Gamma^+}) = \sum_{|\Gamma^-|=l} \# \overline{\mathcal{M}}_{X,A,\gamma}(\Gamma^+,\Gamma^-) \frac{T^{\int_A \omega}}{\mu_{\Gamma^+} \mu_{\Gamma^-} \kappa_{\Gamma^-}} q^{\Gamma^-}.$$

APT and P

Definition

The algebraic planar torsion of (Y, ξ) is the torsion

$$\mathsf{APT}(\mathbf{Y},\xi) = \mathbf{T}(\mathbf{V}_{\alpha},\widehat{\mathbf{p}}).$$

This is independent of α .

APT and P

Definition

The algebraic planar torsion of (Y, ξ) is the torsion

$$\mathsf{APT}(\mathbf{Y},\xi) = \mathbf{T}(\mathbf{V}_{\alpha},\widehat{\mathbf{p}}).$$

This is independent of α .

The planarity of (Y, ξ) is the maximal order over all augmentations,

$$P(Y) := \max_{\epsilon \in \operatorname{Aug}_{\mathbb{Q}}(V_{\alpha})} \left\{ O(V_{\alpha}, \epsilon, \hat{p}_{\bullet}) \right\},$$

where the maximum of an empty set is defined to be zero. This is independent of α .

linearized contact homology

W filling of (Y, ξ) , $\epsilon = \epsilon_W$ induced augmentation on *CHA*(Y).

$$\longrightarrow H_*(\overline{B}^1 V_{\alpha}, \widehat{\ell}_{\epsilon}) = H_*(V_{\alpha}, \ell_{\epsilon}^1) \cong LCH_*(W) \cong SH^{2n-3-*}_{+,S^1}(W)$$

linearized contact homology, or positive S^1 -equivariant symplectic cohomology (Bourgeois–Oancea).

linearized contact homology

W filling of (Y, ξ) , $\epsilon = \epsilon_W$ induced augmentation on *CHA*(Y).

$$\longrightarrow H_*(\overline{B}^1 V_{\alpha}, \widehat{\ell}_{\epsilon}) = H_*(V_{\alpha}, \ell_{\epsilon}^1) \cong LCH_*(W) \cong SH^{2n-3-*}_{+,S^1}(W)$$

linearized contact homology, or positive S^1 -equivariant symplectic cohomology (Bourgeois–Oancea). These are $\mathbb{Q}[U]$ -modules, and

- *U* has degree 2 on $H_*(V_\alpha, \ell_{\epsilon}^1)$;
- for each *x*, there exists *k* such that $U^k(x) = 0$.

Moreover, the *U*-map makes sense for *arbitrary* augmentations on $H_*(V_{\alpha}, \ell_{\epsilon}^1)$.

SD

Let $(Y, \xi = \ker \alpha)$ with P(Y) = 1, $o \in Y$, ϵ an augmentation, and $\ell_{\bullet,\epsilon}^1$ associated pointed map.

Definition

The (ϵ, o) -order of semi-dilation of (Y, ξ) is

 $SD(\mathbf{Y}, \xi, \epsilon, \mathbf{0}) =$

 $\min\left\{k: \text{ there exists } x \in H_*(V_\alpha, \ell_\epsilon^1) \text{ with } U^{k+1}(x) = 0, \ell_{\bullet,\epsilon}^1(x) = 1\right\}.$

The order of semi-dilation of (Y, ξ) is

$$SD(Y,\xi) = \max \{SD(Y,\xi,\epsilon,o) : \epsilon \in Aug_{\mathbb{O}}(V_{\alpha}), o \in Y\}.$$

Only depends on the contact structure, and is functorial.

 RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).
- APT and P have been completely implemented and rigorosuly defined. SD can be implemented with current technology (work in progress; relies on implementing linearized contact homology in Pardon's VFC).

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).
- APT and P have been completely implemented and rigorosuly defined. SD can be implemented with current technology (work in progress; relies on implementing linearized contact homology in Pardon's VFC).
- invariants can be used to obstruct existence of cobordisms and measure complexity of contact manifolds.

- RSFT can be defined as a *BL*_∞-algebra (cf. Eliashberg–Givental– Hofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).
- APT and P have been completely implemented and rigorosuly defined. SD can be implemented with current technology (work in progress; relies on implementing linearized contact homology in Pardon's VFC).
- invariants can be used to obstruct existence of cobordisms and measure complexity of contact manifolds.
- Invariants can be computed or estimated explicitly.

Thank you!