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The category of contact manifolds

Goal: Study the category of contact manifolds.

ConS = category with:
ObpConSq = contact manifolds.
MorConS ppM´, ξ´q, pM`, ξ`qq = strong symplectic cobordisms from
M´ to M`.

Monoidal structure: pM1, ξ1q b pM2, ξ2q “ pM1, ξ1q \ pM2, ξ2q.

Con = subcategory with same objects, but morphisms are exact sym-
plectic cobordisms.

To study Con, we will study functors from Con to other categories.

‚ In this talk: cobordisms are exact.
‚ In Zhengyi’s talk: cobordisms are strong.
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Main theorem

Theorem (M. – Zhou ’20)
There exists a covariant, monoidal complexity/hierarchy functor

Hcx : Con Ñ H

to a totally ordered category

H “ t0APT ă 1APT ă . . . ă 8APT
looooooooooooooooomooooooooooooooooon

0P

ă 0SD ă 1SD ă . . . ă 8SD
loooooooooooooomoooooooooooooon

1P

ă 2P ă . . . ă 8Pu

Functoriality: M´ Ñ M` cobordism ù HcxpM´q ď HcxpM`q.
Monodial structure on H:

• aP b 0P “ 0P, aP b bP “maxtaP,bPu.
• aAPT b bAPT “mintaAPT,bAPTu.
• aSD b bSD “maxtaSD,bSDu.



Intuitively, HcxpM, ξq = “complexity” of pM, ξq.

P = planaritya

APT = algebraic planar torsion.
SD = order of semi-dilation.

aGanatra–Siegel define a similar notion Gxpy but for Liouville domains.

Main tool: Rational (genus zero) symplectic field theory.

P counts rational curves with a point constraint in symplectiza-
tions.
APT counts rational curves with no negative punctures. Inspired
by algebraic torsion (Latschev–Wendl).
SD is defined via the Qrus-module structure on linearized contact
homology (Bourgeois–Oancea).



Intuitively, HcxpM, ξq = “complexity” of pM, ξq.

P = planaritya

APT = algebraic planar torsion.
SD = order of semi-dilation.

aGanatra–Siegel define a similar notion Gxpy but for Liouville domains.

Main tool: Rational (genus zero) symplectic field theory.

P counts rational curves with a point constraint in symplectiza-
tions.
APT counts rational curves with no negative punctures. Inspired
by algebraic torsion (Latschev–Wendl).
SD is defined via the Qrus-module structure on linearized contact
homology (Bourgeois–Oancea).



Intuitively, HcxpM, ξq = “complexity” of pM, ξq.

P = planaritya

APT = algebraic planar torsion.
SD = order of semi-dilation.

aGanatra–Siegel define a similar notion Gxpy but for Liouville domains.

Main tool: Rational (genus zero) symplectic field theory.

P counts rational curves with a point constraint in symplectiza-
tions.
APT counts rational curves with no negative punctures. Inspired
by algebraic torsion (Latschev–Wendl).
SD is defined via the Qrus-module structure on linearized contact
homology (Bourgeois–Oancea).



Relation to contact topology

Theorem (M. – Zhou ’20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then APTpY q ď k.

2. If Y is overtwisted then APTpY q “ 0.

3. If Y has Giroux torsion [Giroux, MNW], then APTpY q ď 1.
4. If APTpY q ă 8, then Y is not strongly fillable. If Y admits an exact

filling then PpY q ě 1.

5. If Y is an iterated planar open book [Acu] where the initial page
has k-punctures, then PpY q ď k.

6. If Y has an exact filling that is not k-uniruled [McLean], then
PpY q ě k ` 1.

7. APT, SD,P are all surjective. In particular, P is surjective in all
fixed odd dimension ě 3.
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Dynamics: Weinstein conjecture

Theorem (M. – Zhou ’20)
If PpY q ă 8, then Y satisfies the Weinstein conjecture.

In other words, counterexamples to the Weinstein conjecture (if any)
are maximally complex.



Examples



Hyperplane complements
Theorem (M. – Zhou)

Let Dk be k generic hyperplanes in CPn for n ě 2, then we have the
following.

1. k ´ 1 ě PpBDc
k q ě k ` 1 ´ n for k ą n ` 1.

2. PpBDc
k q “ k ` 1 ´ n for n ` 1 ă k ă 3n´1

2 and n odd.
3. PpBDc

k q “ 2 for k “ n ` 1.
4. HcxpBDc

k q “ 0SD for k ď n.

Remarks:
(1.) obstructs exact cobordisms BDc

k`r Ñ BDc
k for r ą n ´ 1, k ą

n ` 1; and (2.) obstructs exact cobordisms BDc
k`1 Ñ BDc

k , for
n ` 1 ă k ă 3n´1

2 and n odd.
But there is always a strong cobordism BDc

k`1 Ñ BDc
k .

And there is always an exact cobordism the other way BDc
k Ñ

BDc
k`1.

If k ď n, all BDc
k have exact cobordisms both ways.
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Algebraic aspects



Rational holomorphic buildings

Φ Φ
2,01,1 (C,ω)Φ

1,0

Φ
1,1 Φ

1,1
Φ

1,1
Φ

1,1
Φ

1,1

p2,3TT TT TT

(RxM, d(e α))t

ε2
ε1

(F,ω)
ε2

ε1

We wish to capture the combinatorics of boundary degenerations of rational
curves into rational holomorphic buildings.



Conventions

V = Z2-graded k-v.space. Let SjV “ V bj {Sj , Sj permutation group.

Notation:
SV “

À

jě0 SjV symmetric algebra (words).

SV “
À

jě1 SjV non-unital symmetric algebra (non-empty
words).

B
k
V “

Àk
j“1 SjV (non-empty words with at most k letters).

EV “ SSV (non-empty sentences).
EkV “

Àk
j“1 SjSV Ă EV (sentences with at most k words).



BL8 algebras
Given linear operators pk ,l : SkV Ñ SlV for k ě 1, l ě 0, we can
define a map pp : EV Ñ EV , most easily described by trees.

letter

word

sentence

p2,3

pp is obtained by summing over all glued trees.

Definition
pV , ppq is a BL8´algebra if |pp| “ 1 and pp2 “ 0.



Rational curves

letter

word

sentence

p2,3

p2,3TT TT TT

(RxM, d(e α))t

Graphs represent counts of rational holomorphic curves in symplectizations.



Remarks

BL8-algebras are a genus zero specialization of IBL8-algebras
(Cieliebak–Fukaya–Latschev).

Assuming pk ,0 “ 0 for all k , then p1,1 differential, and on its homo-
logy:

1. p2,1 Lie bracket;
2. p1,2 co-Lie bracket;
3. p1,2 ˝ p2,1 “ 0.

I.e. homology of p1,1 is a bi-Lie algebra.
Under same assumption, pk ,1 induces an L8 algebra on V (Sie-
gel).
In general, a BL8 algebra pV , ppq induces an L8 algebra pSV , pℓq.
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Morphisms
Given linear maps tϕk ,l : SkV Ñ SlV 1ukě1,lě0, we construct pϕ : EV Ñ

EV 1 similarly as before.

Φ
2,3

Φ
1,1Φ

1,1 Φ
1,1

Φ
2,0

Φ Φ
2,01,1

(C,ω)

Φ
1,0

Φ
1,0

Φ
1,1

Φ
1,1

Φ
2,3

Morphism graphs represent counts of rational holomorphic curves in
symplectic cobordisms.

Definition
pϕ is a BL8 morphism from pV ,pq to pV 1,p1q if pϕ ˝ pp “ pp1 ˝ pϕ and
|pϕ| “ 0.



Augmentations

The zero BL8 algebra 0 has Sk0 “ k for all k and pp “ 0.

Definition
A BL8 augmentation is a BL8 morphism ϵ : pV , ppq Ñ 0, i.e. a family
of maps ϵk : SkV Ñ k so that |pϵ| “ 0 and pϵ ˝ pp “ 0.



Augmentations

ε2

ε2

ε1

ε1

(F,ω)
An augmentation algebraically represents counts of rational holomorphic
curves with negative ends on a symplectic filling. It still makes sense
algebraically if there is no filling.



Torsion
Given pV , ppq BL8-algebra, the unit

1V P H˚pEkV q

is the image of the unit

10 P k “ E10 Ă H˚pEk0q “ EK 0

under the map H˚pEk0q Ñ H˚pEkV q induced by 0 Ñ pV , ppq.

Definition
The torsion of a BL8 algebra V is

T pV q :“ mintk ´ 1|1V “ 0 P H˚pEkV q, k ě 1u.

Here the minimum of an empty set is defined to be 8.

This is the algebraic counterpart of APT: roughly speaking, it gives the
smallest number of positive punctures (minus one) of curves killing the
unit in homology.
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Functoriality of torsion

BL8 morphisms preserve the sentence length filtration

E1V Ă E2V Ă . . .

Then:

If pV , ppq Ñ pV 1, pp1q BL8 morphism, we have

T pV q ě T pV 1q.

In particular, if pV , ppq has an augmentation, then T pV q “ 8.



Linearized theory
Given pV , ppq BL8-algebra and ϵ : pV , ppq Ñ 0 augmentation,

ù pV , ppϵq linearized BL8 ´ algebra, with pk ,0
ϵ “ 0.

A p4,1
ϵ component. In general, to obtain pk,l

ϵ , we sum over connected trees
with exactly one pk 1,l 1

, and several ϵj .



Pointed maps and linearizations

Given pk ,l
‚ : SkV Ñ SlV , k ě 1, l ě 0 linear maps, we similarly define

pp‚ : EV Ñ EV , but now |pp‚| ‰ 1 in general.

Definition

pV , tpk ,l
‚ uq is a pointed map for pV , ppq if pp‚ ˝ pp “ p´1q|pp‚|

pp ˝ pp‚.

Pointed maps represent counts of rational holomorphic curves with
one interior marked point constrained on a cycle Z P H˚pY q.

ù |pp‚| “ degpZ q (“ 0 if Z “ pt).

Given a linearization ϵ : pV , ppq Ñ 0,

pp‚ ù pp‚,ϵ linearized pointed map for pV , ppϵq. But pk ,0
‚,ϵ ‰ 0 in

general.
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Order

Let ℓk
ϵ “ pk ,1

ϵ ù pℓϵ (an L8 structure on V r´1s). We get a chain map

pℓ‚,ϵ “
ÿ

kě1

pk ,0
‚,ϵ : pSV , pℓϵq Ñ k.

Definition
The pϵ, pp‚q-order of pV , ppq is

OpV , ϵ, pp‚q :“ min
!

k : 1 P Im pℓ‚,ϵ|H˚pB
k
V ,pℓϵq

)

,

where the minimum of an empty set is defined to be 8.

This is the algebraic counterpart to planarity: roughly speaking, it gives
the smallest number of positive punctures of a point-constrained curve
hitting the unit in k.



Functoriality of order

Given:
BL8 morphism pϕ : pV , ppq Ñ pV 1, pqq;

maps ϕk ,l
‚ : SkV Ñ SlV 1.

ù pϕ‚ : EV Ñ EV 1 via graphs.
pp‚, pq‚ are two pointed maps for pV , ppq, pV 1, pqq respectively, of the
same degree.

Definition

We say pp‚, pq‚, pϕ are compatible, if there are ϕk ,l
‚ such that

pq‚ ˝ pϕ ´ p´1q|pq‚|
pϕ ˝ pp‚ “ pq ˝ pϕ‚ ´ p´1q|pϕ‚|

pϕ‚ ˝ pp

and |pϕ‚| “ |pp‚| ` 1.



Functoriality of order

Assume pp‚, pq‚, pϕ are compatible and |pp‚| “ |pq‚| “ 0. Then:

For any BL8 augmentation ϵ of V 1, we have

OpV , ϵ ˝ pϕ, pp‚q ě OpV 1, ϵ, pq‚q.



Geometric aspects



RSFT as a BL8-algebra

pY 2n´1, αq strict contact manifold. Λ “ Novikov field.
Vα “ free Λ-module generated by (good) Reeb orbits.

CHApY q “ SVα contact homology algebra.
γ orbit ù generator qγ , |qγ | “ µCZ pγq ` n ´ 3 mod 2.
Γ “ tη1, . . . , η1

loooomoooon

i1

, . . . , ηm, . . . , ηm
looooomooooon

im

u ordered orbit set, ηi ‰ ηj , i ‰ j ,

ř

ij “ l “: |Γ|.

µΓ “ i1! . . . im!, κΓ “ κi1
η1 . . . κ

im
ηm product of multiplicities, and qΓ “

qi1
η1 . . . q

im
ηm .
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RSFT as a BL8-algebra

MY ,ApΓ`, Γ´q “ compactified moduli space of rational curves in R ˆ Y
asymptotic to Γ˘ in homology class A P H2pY , Γ´ Y Γ`q.

pk ,lpqΓ`

q “
ÿ

|Γ´|“l

#MY ,ApΓ`, Γ´q
T
ş

A dα

µΓ`µΓ´κΓ´

qΓ´

.

Fix a point o in Y , MY ,A,opΓ`, Γ´q = rational curves passing through o.

pk ,l
‚ pqΓ`

q “
ÿ

|Γ´|“l

#MY ,A,opΓ`, Γ´q
T
ş

A dα

µΓ`µΓ´κΓ´

qΓ´
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RSFT as a BL8-algebra

pX , ω “ dλq exact cobordism from pY´, α´q to pY`, α`q.

ϕk ,lpqΓ`

q “
ÿ

|Γ´|“l

#MX ,ApΓ`, Γ´q
T
ş

A ω

µΓ`µΓ´κΓ´

qΓ´

.

If Y´ “ H, i.e. X filling, define ϵk “ ϕk ,0 as linearization.

Fix points o˘ in Y˘, and a curve γ in X joining them, MX ,A,γpΓ`, Γ´q =
moduli of curves in X passing through γ.

ϕk ,l
‚ pqΓ`

q “
ÿ

|Γ´|“l

#MX ,A,γpΓ`, Γ´q
T
ş

A ω

µΓ`µΓ´κΓ´

qΓ´

.
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APT and P

Definition
The algebraic planar torsion of pY , ξq is the torsion

APTpY , ξq “ T pVα, ppq.

This is independent of α.

The planarity of pY , ξq is the maximal order over all
augmentations,

PpY q :“ max
ϵPAugQpVαq

␣

OpVα, ϵ, pp‚q
(

,

where the maximum of an empty set is defined to be zero. This is
independent of α.
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linearized contact homology

W filling of pY , ξq, ϵ “ ϵW induced augmentation on CHApY q.

ù H˚pB
1
Vα, pℓϵq “ H˚pVα, ℓ

1
ϵ q – LCH˚pW q – SH2n´3´˚

`,S1 pW q

linearized contact homology, or positive S1-equivariant symplectic co-
homology (Bourgeois–Oancea).

These are QrUs-modules, and

U has degree 2 on H˚pVα, ℓ
1
ϵ q;

for each x , there exists k such that Uk pxq “ 0.

Moreover, the U-map makes sense for arbitrary augmentations on
H˚pVα, ℓ

1
ϵ q.



linearized contact homology

W filling of pY , ξq, ϵ “ ϵW induced augmentation on CHApY q.

ù H˚pB
1
Vα, pℓϵq “ H˚pVα, ℓ

1
ϵ q – LCH˚pW q – SH2n´3´˚

`,S1 pW q

linearized contact homology, or positive S1-equivariant symplectic co-
homology (Bourgeois–Oancea). These are QrUs-modules, and

U has degree 2 on H˚pVα, ℓ
1
ϵ q;

for each x , there exists k such that Uk pxq “ 0.

Moreover, the U-map makes sense for arbitrary augmentations on
H˚pVα, ℓ

1
ϵ q.



SD

Let pY , ξ “ kerαq with PpY q “ 1, o P Y , ϵ an augmentation, and ℓ1
‚,ϵ

associated pointed map.

Definition
The pϵ,oq-order of semi-dilation of pY , ξq is

SDpY , ξ, ϵ, oq “

min
!

k : there exists x P H˚pVα, ℓ
1
ϵ q with Uk`1pxq “ 0, ℓ1

‚,ϵpxq “ 1
)

.

The order of semi-dilation of pY , ξq is

SDpY , ξq “ max
␣

SDpY , ξ, ϵ, oq : ϵ P AugQpVαq,o P Y
(

.

Only depends on the contact structure, and is functorial.



Summary
RSFT can be defined as a BL8-algebra (cf. Eliashberg–Givental–
Hofer formalism).

This notion captures: differentials, morphisms, and augmenta-
tions, and their pointed versions.
Can define two invariants algebraically (torsion, order).
These translate to three geometric invariants (APT, P, SD).
These are functorial, and independent on contact form. The inva-
riants are not expected to depend on virtual machinery: functoria-
lity and our examples are independent of it under minimal requi-
rements (i.e. geometric count = virtual count when transversality
holds).
APT and P have been completely implemented and rigorosuly
defined. SD can be implemented with current technology (work in
progress; relies on implementing linearized contact homology in
Pardon’s VFC).
invariants can be used to obstruct existence of cobordisms and
measure complexity of contact manifolds.
Invariants can be computed or estimated explicitly.
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Thank you!


