A landscape of contact manifolds via rational SFT

Agustin Moreno
Universität Heidelberg

SFT X, Berlin
J.w. Zhengyi Zhou (Morningside Center, Beijing)

The category of contact manifolds

Goal: Study the category of contact manifolds.

The category of contact manifolds

Goal: Study the category of contact manifolds.
$\mathfrak{C o n}_{S}=$ category with:

- $\mathrm{Ob}\left(\mathfrak{C o n}_{S}\right)=$ contact manifolds.
- $\operatorname{Mor}_{\mathfrak{C o n}_{s}}\left(\left(M_{-}, \xi_{-}\right),\left(M_{+}, \xi_{+}\right)\right)=$strong symplectic cobordisms from M_{-}to M_{+}.
Monoidal structure: $\left(M_{1}, \xi_{1}\right) \otimes\left(M_{2}, \xi_{2}\right)=\left(M_{1}, \xi_{1}\right) \sqcup\left(M_{2}, \xi_{2}\right)$.

The category of contact manifolds

Goal: Study the category of contact manifolds.
$\mathfrak{C o n}_{S}=$ category with:

- $\mathrm{Ob}\left(\mathfrak{C o n}_{S}\right)=$ contact manifolds.
- $\operatorname{Mor}_{\mathfrak{C o n}_{s}}\left(\left(M_{-}, \xi_{-}\right),\left(M_{+}, \xi_{+}\right)\right)=$strong symplectic cobordisms from M_{-}to M_{+}.
Monoidal structure: $\left(M_{1}, \xi_{1}\right) \otimes\left(M_{2}, \xi_{2}\right)=\left(M_{1}, \xi_{1}\right) \sqcup\left(M_{2}, \xi_{2}\right)$.
$\mathfrak{C o n}=$ subcategory with same objects, but morphisms are exact symplectic cobordisms.

To study $\mathfrak{C o n}$, we will study functors from $\mathfrak{C o n}$ to other categories.

The category of contact manifolds

Goal: Study the category of contact manifolds.
$\mathfrak{C o n}_{S}=$ category with:

- $\mathrm{Ob}\left(\mathfrak{C o n}_{S}\right)=$ contact manifolds.
- $\operatorname{Mor}_{\mathfrak{C o n}_{S}}\left(\left(M_{-}, \xi_{-}\right),\left(M_{+}, \xi_{+}\right)\right)=$strong symplectic cobordisms from M_{-}to M_{+}.
Monoidal structure: $\left(M_{1}, \xi_{1}\right) \otimes\left(M_{2}, \xi_{2}\right)=\left(M_{1}, \xi_{1}\right) \sqcup\left(M_{2}, \xi_{2}\right)$.
$\mathfrak{C o n}=$ subcategory with same objects, but morphisms are exact symplectic cobordisms.

To study $\mathfrak{C o n}$, we will study functors from $\mathfrak{C o n}$ to other categories.

- In this talk: cobordisms are exact.
- In Zhengyi's talk: cobordisms are strong.

Main theorem

Theorem (M. - Zhou '20)

There exists a covariant, monoidal complexity/hierarchy functor

$$
\mathrm{H}_{\mathrm{cx}}: \mathfrak{C o n} \rightarrow \mathcal{H}
$$

to a totally ordered category

$$
\mathcal{H}=\{\underbrace{\left\{0^{\mathrm{APT}}<1^{\mathrm{APT}}<\ldots<\infty^{\mathrm{APT}}\right.}_{0^{\mathrm{P}}}<\underbrace{0^{\mathrm{SD}}<1^{\mathrm{SD}}<\ldots<\infty^{\mathrm{SD}}}
$$

- Functoriality: $M_{-} \rightarrow M_{+}$cobordism $\leadsto \mathrm{H}_{\mathrm{cx}}\left(M_{-}\right) \leqslant \mathrm{H}_{\mathrm{cx}}\left(M_{+}\right)$.
- Monodial structure on \mathcal{H} :
- $a^{\mathrm{P}} \otimes 0^{\mathrm{P}}=0^{\mathrm{P}}, a^{\mathrm{P}} \otimes b^{\mathrm{P}}=\max \left\{a^{\mathrm{P}}, b^{\mathrm{P}}\right\}$.
- $a^{\mathrm{APT}} \otimes b^{\mathrm{APT}}=\min \left\{a^{\mathrm{APT}}, b^{\mathrm{APT}}\right\}$.
- $a^{\mathrm{SD}} \otimes b^{\mathrm{SD}}=\max \left\{a^{\mathrm{SD}}, b^{\mathrm{SD}}\right\}$.

Intuitively, $\mathrm{H}_{\mathrm{cx}}(M, \xi)=$ "complexity" of (M, ξ).

Intuitively, $\mathrm{H}_{\mathrm{cx}}(M, \xi)=$ "complexity" of (M, ξ).

- $P=$ planarity ${ }^{a}$
- APT = algebraic planar torsion.
- $\mathrm{SD}=$ order of semi-dilation.
${ }^{a}$ Ganatra-Siegel define a similar notion $\mathbb{G}\langle p\rangle$ but for Liouville domains.

```
Intuitively, }\mp@subsup{\textrm{H}}{\textrm{cx}}{}(M,\xi)=\mathrm{ "complexity" of (M, })\mathrm{ ).
```

- $P=$ planarity ${ }^{a}$
- $\mathrm{APT}=$ algebraic planar torsion.
- $\mathrm{SD}=$ order of semi-dilation.
${ }^{a}$ Ganatra-Siegel define a similar notion $\mathbb{G}\langle p\rangle$ but for Liouville domains.

Main tool: Rational (genus zero) symplectic field theory.

- P counts rational curves with a point constraint in symplectizations.
- APT counts rational curves with no negative punctures. Inspired by algebraic torsion (Latschev-Wendl).
- SD is defined via the $\mathbb{Q}[u]$-module structure on linearized contact homology (Bourgeois-Oancea).

Relation to contact topology

Theorem (M. - Zhou '20)
The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\operatorname{APT}(Y) \leqslant k$.

Relation to contact topology

Theorem (M. - Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\mathrm{APT}(Y) \leqslant k$.
2. If Y is overtwisted then $\operatorname{APT}(Y)=0$.

Relation to contact topology

Theorem (M. - Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\mathrm{APT}(Y) \leqslant k$.
2. If Y is overtwisted then $\mathrm{APT}(Y)=0$.
3. If Y has Giroux torsion [Giroux, MNW], then APT $(Y) \leqslant 1$.

Relation to contact topology

Theorem (M. - Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\operatorname{APT}(Y) \leqslant k$.
2. If Y is overtwisted then $\operatorname{APT}(Y)=0$.
3. If Y has Giroux torsion [Giroux, MNW], then $\operatorname{APT}(Y) \leqslant 1$.
4. If $\mathrm{APT}(Y)<\infty$, then Y is not strongly fillable. If Y admits an exact filling then $\mathrm{P}(Y) \geqslant 1$.

Relation to contact topology

Theorem (M. - Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\mathrm{APT}(Y) \leqslant k$.
2. If Y is overtwisted then $\mathrm{APT}(Y)=0$.
3. If Y has Giroux torsion [Giroux, MNW], then $\operatorname{APT}(Y) \leqslant 1$.
4. If $\mathrm{APT}(Y)<\infty$, then Y is not strongly fillable. If Y admits an exact filling then $\mathrm{P}(Y) \geqslant 1$.
5. If Y is an iterated planar open book [Acu] where the initial page has k-punctures, then $\mathrm{P}(Y) \leqslant k$.

Relation to contact topology

Theorem (M. - Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\operatorname{APT}(Y) \leqslant k$.
2. If Y is overtwisted then $\operatorname{APT}(Y)=0$.
3. If Y has Giroux torsion [Giroux, MNW], then $\operatorname{APT}(Y) \leqslant 1$.
4. If $\mathrm{APT}(Y)<\infty$, then Y is not strongly fillable. If Y admits an exact filling then $\mathrm{P}(Y) \geqslant 1$.
5. If Y is an iterated planar open book [Acu] where the initial page has k-punctures, then $\mathrm{P}(Y) \leqslant k$.
6. If Y has an exact filling that is not k-uniruled [McLean], then $\mathrm{P}(Y) \geqslant k+1$.

Relation to contact topology

Theorem (M. - Zhou '20)

The functors above have the following properties.

1. If Y has planar k-torsion [Wendl], then $\mathrm{APT}(Y) \leqslant k$.
2. If Y is overtwisted then $\operatorname{APT}(Y)=0$.
3. If Y has Giroux torsion [Giroux, MNW], then APT $(Y) \leqslant 1$.
4. If $\mathrm{APT}(Y)<\infty$, then Y is not strongly fillable. If Y admits an exact filling then $\mathrm{P}(Y) \geqslant 1$.
5. If Y is an iterated planar open book [Acu] where the initial page has k-punctures, then $\mathrm{P}(Y) \leqslant k$.
6. If Y has an exact filling that is not k-uniruled [McLean], then $\mathrm{P}(Y) \geqslant k+1$.
7. APT, SD, P are all surjective. In particular, P is surjective in all fixed odd dimension $\geqslant 3$.

Dynamics: Weinstein conjecture

Theorem (M. - Zhou '20)
If $P(Y)<\infty$, then Y satisfies the Weinstein conjecture.
In other words, counterexamples to the Weinstein conjecture (if any) are maximally complex.

Examples

Hyperplane complements

Theorem (M. - Zhou)
Let D_{k} be k generic hyperplanes in $\mathbb{C} P^{n}$ for $n \geqslant 2$, then we have the following.

1. $k-1 \geqslant \mathrm{P}\left(\partial D_{k}^{c}\right) \geqslant k+1-n$ for $k>n+1$.
2. $\mathrm{P}\left(\partial D_{k}^{c}\right)=k+1-n$ for $n+1<k<\frac{3 n-1}{2}$ and n odd.
3. $\mathrm{P}\left(\partial D_{k}^{c}\right)=2$ for $k=n+1$.
4. $H_{c x}\left(\partial D_{k}^{c}\right)=0^{S D}$ for $k \leqslant n$.

Hyperplane complements

Theorem (M. - Zhou)
Let D_{k} be k generic hyperplanes in $\mathbb{C} P^{n}$ for $n \geqslant 2$, then we have the following.

1. $k-1 \geqslant \mathrm{P}\left(\partial D_{k}^{c}\right) \geqslant k+1-n$ for $k>n+1$.
2. $\mathrm{P}\left(\partial D_{k}^{c}\right)=k+1-n$ for $n+1<k<\frac{3 n-1}{2}$ and n odd.
3. $\mathrm{P}\left(\partial D_{k}^{c}\right)=2$ for $k=n+1$.
4. $\mathrm{H}_{\mathrm{cx}}\left(\partial D_{k}^{c}\right)=0^{\mathrm{SD}}$ for $k \leqslant n$.

Remarks:

- (1.) obstructs exact cobordisms $\partial D_{k+r}^{c} \rightarrow \partial D_{k}^{c}$ for $r>n-1, k>$ $n+1$; and (2.) obstructs exact cobordisms $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$, for $n+1<k<\frac{3 n-1}{2}$ and n odd.

Hyperplane complements

Theorem (M. - Zhou)
Let D_{k} be k generic hyperplanes in $\mathbb{C} P^{n}$ for $n \geqslant 2$, then we have the following.

1. $k-1 \geqslant \mathrm{P}\left(\partial D_{k}^{c}\right) \geqslant k+1-n$ for $k>n+1$.
2. $\mathrm{P}\left(\partial D_{k}^{c}\right)=k+1-n$ for $n+1<k<\frac{3 n-1}{2}$ and n odd.
3. $\mathrm{P}\left(\partial D_{k}^{c}\right)=2$ for $k=n+1$.
4. $\mathrm{H}_{\mathrm{cx}}\left(\partial D_{k}^{\mathrm{c}}\right)=0^{\mathrm{SD}}$ for $k \leqslant n$.

Remarks:

- (1.) obstructs exact cobordisms $\partial D_{k+r}^{c} \rightarrow \partial D_{k}^{c}$ for $r>n-1, k>$ $n+1$; and (2.) obstructs exact cobordisms $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$, for $n+1<k<\frac{3 n-1}{2}$ and n odd.
- But there is always a strong cobordism $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$.

Hyperplane complements

Theorem (M. - Zhou)
Let D_{k} be k generic hyperplanes in $\mathbb{C} P^{n}$ for $n \geqslant 2$, then we have the following.

1. $k-1 \geqslant \mathrm{P}\left(\partial D_{k}^{c}\right) \geqslant k+1-n$ for $k>n+1$.
2. $\mathrm{P}\left(\partial D_{k}^{c}\right)=k+1-n$ for $n+1<k<\frac{3 n-1}{2}$ and n odd.
3. $\mathrm{P}\left(\partial D_{k}^{\mathrm{c}}\right)=2$ for $k=n+1$.
4. $\mathrm{H}_{\mathrm{cx}}\left(\partial D_{k}^{c}\right)=0^{\text {SD }}$ for $k \leqslant n$.

Remarks:

- (1.) obstructs exact cobordisms $\partial D_{k+r}^{c} \rightarrow \partial D_{k}^{c}$ for $r>n-1, k>$ $n+1$; and (2.) obstructs exact cobordisms $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$, for $n+1<k<\frac{3 n-1}{2}$ and n odd.
- But there is always a strong cobordism $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$.
- And there is always an exact cobordism the other way $\partial D_{k}^{c} \rightarrow$ ∂D_{k+1}^{c}.

Hyperplane complements

Theorem (M. - Zhou)

Let D_{k} be k generic hyperplanes in $\mathbb{C} P^{n}$ for $n \geqslant 2$, then we have the following.

1. $k-1 \geqslant \mathrm{P}\left(\partial D_{k}^{c}\right) \geqslant k+1-n$ for $k>n+1$.
2. $\mathrm{P}\left(\partial D_{k}^{c}\right)=k+1-n$ for $n+1<k<\frac{3 n-1}{2}$ and n odd.
3. $\mathrm{P}\left(\partial D_{k}^{\mathrm{c}}\right)=2$ for $k=n+1$.
4. $\mathrm{H}_{\mathrm{cx}}\left(\partial D_{k}^{c}\right)=0^{\text {SD }}$ for $k \leqslant n$.

Remarks:

- (1.) obstructs exact cobordisms $\partial D_{k+r}^{c} \rightarrow \partial D_{k}^{c}$ for $r>n-1, k>$ $n+1$; and (2.) obstructs exact cobordisms $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$, for $n+1<k<\frac{3 n-1}{2}$ and n odd.
- But there is always a strong cobordism $\partial D_{k+1}^{c} \rightarrow \partial D_{k}^{c}$.
- And there is always an exact cobordism the other way $\partial D_{k}^{c} \rightarrow$ ∂D_{k+1}^{c}.
- If $k \leqslant n$, all ∂D_{k}^{c} have exact cobordisms both ways.

Algebraic aspects

Rational holomorphic buildings

We wish to capture the combinatorics of boundary degenerations of rational curves into rational holomorphic buildings.

Conventions

$V=\mathbb{Z}_{2}$-graded \mathbf{k}-v.space. Let $S^{j} V=V^{\otimes_{j}} / S_{j}, S_{j}$ permutation group.

Notation:

- $S V=\bigoplus_{j \geqslant 0} S^{j} V$ symmetric algebra (words).
- $\bar{S} V=\bigoplus_{j \geqslant 1} S^{j} V$ non-unital symmetric algebra (non-empty words).
- $\bar{B}^{k} V=\oplus_{j=1}^{k} S^{j} V$ (non-empty words with at most k letters).
- $E V=\bar{S} S V$ (non-empty sentences).
- $E^{k} V=\bigoplus_{j=1}^{k} S^{j} S V \subset E V$ (sentences with at most k words).

$B L_{\infty}$ algebras

Given linear operators $p^{k, l}: S^{k} V \rightarrow S^{\prime} V$ for $k \geqslant 1, I \geqslant 0$, we can define a map $\hat{p}: E V \rightarrow E V$, most easily described by trees.

\hat{p} is obtained by summing over all glued trees.

Definition

(V, \hat{p}) is a $B L_{\infty}$-algebra if $|\hat{p}|=1$ and $\hat{p}^{2}=0$.

Rational curves

Graphs represent counts of rational holomorphic curves in symplectizations.

Remarks

- $B L_{\infty}$-algebras are a genus zero specialization of $I B L_{\infty}$-algebras (Cieliebak-Fukaya-Latschev).

Remarks

- $B L_{\infty}$-algebras are a genus zero specialization of $I B L_{\infty}$-algebras (Cieliebak-Fukaya-Latschev).
- Assuming $p^{k, 0}=0$ for all k, then $p^{1,1}$ differential, and on its homology:

1. $p^{2,1}$ Lie bracket;
2. $p^{1,2}$ co-Lie bracket;
3. $p^{1,2} \circ p^{2,1}=0$.
I.e. homology of $p^{1,1}$ is a bi-Lie algebra.

Remarks

- $B L_{\infty}$-algebras are a genus zero specialization of $I B L_{\infty}$-algebras (Cieliebak-Fukaya-Latschev).
- Assuming $p^{k, 0}=0$ for all k, then $p^{1,1}$ differential, and on its homology:

1. $p^{2,1}$ Lie bracket;
2. $p^{1,2}$ co-Lie bracket;
3. $p^{1,2} \circ p^{2,1}=0$.
I.e. homology of $p^{1,1}$ is a bi-Lie algebra.

- Under same assumption, $p^{k, 1}$ induces an L_{∞} algebra on V (Siegel).

Remarks

- $B L_{\infty}$-algebras are a genus zero specialization of $I B L_{\infty}$-algebras (Cieliebak-Fukaya-Latschev).
- Assuming $p^{k, 0}=0$ for all k, then $p^{1,1}$ differential, and on its homology:

1. $p^{2,1}$ Lie bracket;
2. $p^{1,2}$ co-Lie bracket;
3. $p^{1,2} \circ p^{2,1}=0$.
I.e. homology of $p^{1,1}$ is a bi-Lie algebra.

- Under same assumption, $p^{k, 1}$ induces an L_{∞} algebra on V (Siegel).
- In general, a $B L_{\infty}$ algebra (V, \widehat{p}) induces an L_{∞} algebra $(S V, \widehat{\ell})$.

Morphisms

Given linear maps $\left\{\phi^{k, l}: S^{k} V \rightarrow S^{\prime} V^{\prime}\right\}_{k \geqslant 1, \geqslant 0}$, we construct $\hat{\phi}: E V \rightarrow$ $E V^{\prime}$ similarly as before.

Morphism graphs represent counts of rational holomorphic curves in symplectic cobordisms.

Definition

$\hat{\phi}$ is a $B L_{\infty}$ morphism from (V, p) to $\left(V^{\prime}, p^{\prime}\right)$ if $\hat{\phi} \circ \hat{p}=\hat{p}^{\prime} \circ \hat{\phi}$ and $|\hat{\phi}|=0$.

Augmentations

The zero $B L_{\infty}$ algebra $\mathbf{0}$ has $S^{k} \mathbf{0}=\mathbf{k}$ for all k and $\hat{p}=0$.

Definition

A $B L_{\infty}$ augmentation is a $B L_{\infty}$ morphism $\epsilon:(V, \hat{p}) \rightarrow \mathbf{0}$, i.e. a family of maps $\epsilon^{k}: S^{k} V \rightarrow \mathbf{k}$ so that $|\hat{\epsilon}|=0$ and $\hat{\epsilon} \circ \hat{p}=0$.

Augmentations

An augmentation algebraically represents counts of rational holomorphic curves with negative ends on a symplectic filling. It still makes sense algebraically if there is no filling.

Torsion

Given (V, \hat{p}) $B L_{\infty}$-algebra, the unit

$$
1_{V} \in H_{*}\left(E^{k} V\right)
$$

is the image of the unit

$$
1_{\mathbf{0}} \in \mathbf{k}=E^{1} \mathbf{0} \subset H_{*}\left(E^{\kappa} \mathbf{0}\right)=E^{K} \mathbf{0}
$$

under the map $H_{*}\left(E^{k} \mathbf{0}\right) \rightarrow H_{*}\left(E^{k} V\right)$ induced by $\mathbf{0} \rightarrow(V, \hat{p})$.

Torsion

Given (V, \hat{p}) $B L_{\infty}$-algebra, the unit

$$
1_{V} \in H_{*}\left(E^{k} V\right)
$$

is the image of the unit

$$
\mathbf{1}_{\mathbf{0}} \in \mathbf{k}=E^{1} \mathbf{0} \subset H_{*}\left(E^{k} \mathbf{0}\right)=E^{K} \mathbf{0}
$$

under the map $H_{*}\left(E^{k} \mathbf{0}\right) \rightarrow H_{*}\left(E^{k} V\right)$ induced by $\mathbf{0} \rightarrow(V, \hat{p})$.

Definition

The torsion of a $B L_{\infty}$ algebra V is

$$
T(V):=\min \left\{k-1 \mid 1 V=0 \in H^{*}\left(E^{k} V\right), k \geqslant 1\right\} .
$$

Here the minimum of an empty set is defined to be ∞.
This is the algebraic counterpart of APT: roughly speaking, it gives the smallest number of positive punctures (minus one) of curves killing the unit in homology.

Functoriality of torsion

$B L_{\infty}$ morphisms preserve the sentence length filtration

$$
E^{1} V \subset E^{2} V \subset \ldots
$$

Then:

If $(V, \hat{p}) \rightarrow\left(V^{\prime}, \hat{p^{\prime}}\right) B L_{\infty}$ morphism, we have

$$
T(V) \geqslant T\left(V^{\prime}\right)
$$

In particular, if (V, \widehat{p}) has an augmentation, then $T(V)=\infty$.

Linearized theory
Given $(V, \widehat{p}) B L_{\infty}$-algebra and $\epsilon:(V, \hat{p}) \rightarrow \mathbf{0}$ augmentation,

$$
m\left(V, \hat{p}_{\epsilon}\right) \text { linearized } B L_{\infty}-\text { algebra, with } p_{\epsilon}^{k, 0}=0 .
$$

A $p_{\epsilon}^{4,1}$ component. In general, to obtain $p_{\epsilon}^{k, l}$, we sum over connected trees with exactly one $p^{k^{\prime}, l^{\prime}}$, and several ϵ^{j}.

Pointed maps and linearizations

Given $p_{0}^{k, I}: S^{k} V \rightarrow S^{\prime} V, k \geqslant 1, I \geqslant 0$ linear maps, we similarly define $\hat{p}_{\mathbf{\bullet}}: E V \rightarrow E V$, but now $\left|\hat{p}_{0}\right| \neq 1$ in general.

Definition

$\left(V,\left\{p_{0}^{k, l}\right\}\right)$ is a pointed map for (V, \hat{p}) if $\hat{p}_{\bullet} \circ \hat{p}=(-1)^{\mid \hat{p}_{\bullet}} \mid \hat{p} \circ \hat{p}_{\bullet}$.

Pointed maps and linearizations

Given $p_{\bullet}^{k, I}: S^{k} V \rightarrow S^{\prime} V, k \geqslant 1, I \geqslant 0$ linear maps, we similarly define $\hat{p}_{\mathbf{\bullet}}: E V \rightarrow E V$, but now $\left|\hat{p}_{0}\right| \neq 1$ in general.

Definition

$\left(V,\left\{p_{0}^{k, l}\right\}\right)$ is a pointed map for (V, \hat{p}) if $\hat{p}_{\bullet} \circ \hat{p}=(-1)^{\mid \hat{p}_{\bullet}} \mid \hat{p} \circ \hat{p}_{\bullet}$.
Pointed maps represent counts of rational holomorphic curves with one interior marked point constrained on a cycle $Z \in H_{*}(Y)$.
$m \rightarrow\left|\hat{p}_{\bullet}\right|=\operatorname{deg}(Z)(=0$ if $Z=\mathrm{pt})$.

Pointed maps and linearizations

Given $p_{0}^{k, I}: S^{k} V \rightarrow S^{\prime} V, k \geqslant 1, I \geqslant 0$ linear maps, we similarly define $\hat{p}_{\mathbf{0}}: E V \rightarrow E V$, but now $\left|\hat{p}_{\mathbf{0}}\right| \neq 1$ in general.

Definition

$\left(V,\left\{p_{0}^{k, l}\right\}\right)$ is a pointed map for (V, \hat{p}) if $\hat{p}_{\bullet} \circ \hat{p}=(-1)^{\mid \hat{p}_{\bullet}} \mid \hat{p} \circ \hat{p}_{\mathbf{\bullet}}$.
Pointed maps represent counts of rational holomorphic curves with one interior marked point constrained on a cycle $Z \in H_{*}(Y)$.
$m \rightarrow\left|\hat{p}_{0}\right|=\operatorname{deg}(Z)(=0$ if $Z=\mathrm{pt})$.
Given a linearization $\epsilon:(V, \hat{p}) \rightarrow \mathbf{0}$,
$\hat{p}_{\bullet} m \hat{p}_{\bullet}, \epsilon$ linearized pointed map for $\left(V, \hat{p}_{\epsilon}\right)$. But $p_{\mathbf{\bullet}, \epsilon}^{k, 0} \neq 0$ in
general.

Order

Let $\ell_{\epsilon}^{k}=p_{\epsilon}^{k, 1} \rightsquigarrow \leadsto \hat{\ell}_{\epsilon}$ (an L_{∞} structure on $\left.V[-1]\right)$. We get a chain map

$$
\hat{\ell}_{\bullet, \epsilon}=\sum_{k \geqslant 1} p_{\bullet, \epsilon}^{k, 0}:\left(\bar{S} V, \hat{\ell}_{\epsilon}\right) \rightarrow \mathbf{k} .
$$

Definition

The $(\epsilon, \widehat{p}$.$) -order of (V, \widehat{p})$ is

$$
O\left(V, \epsilon, \hat{p}_{\bullet}\right):=\min \left\{k: 1 \in \operatorname{lm} \hat{\ell}_{\bullet},\left.\epsilon\right|_{H_{*}\left(\bar{B}^{\star} V, \hat{\mathscr{l}}_{\epsilon}\right)}\right\},
$$

where the minimum of an empty set is defined to be ∞.
This is the algebraic counterpart to planarity: roughly speaking, it gives the smallest number of positive punctures of a point-constrained curve hitting the unit in \mathbf{k}.

Functoriality of order

Given:

- $B L_{\infty}$ morphism $\hat{\phi}:(V, \widehat{p}) \rightarrow\left(V^{\prime}, \widehat{q}\right)$;
- maps $\phi_{\bullet}^{k, l}: S^{k} V \rightarrow S^{\prime} V^{\prime}$.
$\leadsto \hat{\phi}_{\bullet}: E V \rightarrow E V^{\prime}$ via graphs.
- $\hat{p}_{\mathbf{\bullet}}, \hat{q}_{\bullet}$ are two pointed maps for $(V, \hat{p}),\left(V^{\prime}, \widehat{q}\right)$ respectively, of the same degree.

Definition

We say $\hat{p}_{\bullet}, \hat{q}_{\bullet}, \hat{\phi}$ are compatible, if there are $\phi_{\bullet}^{k, l}$ such that

$$
\hat{q}_{\bullet} \circ \hat{\phi}-(-1)^{\left|\hat{q}_{\bullet}\right|} \hat{\phi} \circ \hat{p}_{\bullet}=\hat{q} \circ \hat{\phi}_{\bullet}-(-1)^{\left|\hat{\phi}_{\bullet}\right|} \hat{\phi}_{\bullet} \circ \hat{p}
$$

and $\left|\hat{\phi}_{\bullet}\right|=\left|\hat{p}_{\bullet}\right|+1$.

Functoriality of order

Assume $\hat{p}_{0}, \hat{q}_{\bullet}, \hat{\phi}$ are compatible and $\left|\hat{p}_{\bullet}\right|=\left|\hat{q}_{0}\right|=0$. Then:

For any $B L_{\infty}$ augmentation ϵ of V^{\prime}, we have

$$
O\left(V, \epsilon \circ \hat{\phi}, \hat{p}_{\mathbf{0}}\right) \geqslant O\left(V^{\prime}, \epsilon, \hat{q}_{\mathbf{0}}\right) .
$$

Geometric aspects

RSFT as a $B L_{\infty}$-algebra

($\left.Y^{2 n-1}, \alpha\right)$ strict contact manifold. $\Lambda=$ Novikov field.

- $V_{\alpha}=$ free Λ-module generated by (good) Reeb orbits.

RSFT as a $B L_{\infty}$-algebra

($\left.Y^{2 n-1}, \alpha\right)$ strict contact manifold. $\Lambda=$ Novikov field.

- $V_{\alpha}=$ free Λ-module generated by (good) Reeb orbits.
- $C H A(Y)=S V_{\alpha}$ contact homology algebra.

RSFT as a $B L_{\infty}$-algebra

($\left.Y^{2 n-1}, \alpha\right)$ strict contact manifold. $\Lambda=$ Novikov field.

- $V_{\alpha}=$ free Λ-module generated by (good) Reeb orbits.
- $C H A(Y)=S V_{\alpha}$ contact homology algebra.
- γ orbit $\leadsto \rightarrow$ generator $q_{\gamma},\left|q_{\gamma}\right|=\mu_{c z}(\gamma)+n-3 \bmod 2$.

RSFT as a $B L_{\infty}$-algebra

($Y^{2 n-1}, \alpha$) strict contact manifold. $\Lambda=$ Novikov field.

- $V_{\alpha}=$ free Λ-module generated by (good) Reeb orbits.
- $C H A(Y)=S V_{\alpha}$ contact homology algebra.
- γ orbit $\leadsto \rightarrow$ generator $q_{\gamma},\left|q_{\gamma}\right|=\mu_{C z}(\gamma)+n-3 \bmod 2$.

■ 「 $=\{\underbrace{\eta_{1}, \ldots, \eta_{1}}_{i_{1}}, \ldots, \underbrace{\eta_{m}, \ldots, \eta_{m}}_{i_{m}}\}$ ordered orbit set, $\eta_{i} \neq \eta_{j}, i \neq j$, $\sum i_{j}=I=:|\Gamma|$.

RSFT as a $B L_{\infty}$-algebra

($Y^{2 n-1}, \alpha$) strict contact manifold. $\Lambda=$ Novikov field.

- $V_{\alpha}=$ free Λ-module generated by (good) Reeb orbits.
- $C H A(Y)=S V_{\alpha}$ contact homology algebra.
- γ orbit \leadsto generator $q_{\gamma},\left|q_{\gamma}\right|=\mu_{C z}(\gamma)+n-3 \bmod 2$.
-「 $=\{\underbrace{\eta_{1}, \ldots, \eta_{1}}_{i_{1}}, \ldots, \underbrace{\eta_{m}, \ldots, \eta_{m}}_{i_{m}}\}$ ordered orbit set, $\eta_{i} \neq \eta_{j}, i \neq j$, $\sum i_{j}=I=:|\Gamma|$.
- $\mu_{\Gamma}=i_{1}!\ldots i_{m}!, \kappa_{\Gamma}=\kappa_{\eta_{1}}^{i_{1}} \ldots \kappa_{\eta_{m}}^{i_{m}}$ product of multiplicities, and $q^{\Gamma}=$ $q_{\eta_{1}}^{i_{1}} \ldots q_{\eta_{m}}^{i_{m}}$.

RSFT as a $B L_{\infty}$-algebra

$\overline{\mathcal{M}}_{Y, A}\left(\Gamma^{+}, \Gamma^{-}\right)=$compactified moduli space of rational curves in $\mathbb{R} \times Y$ asymptotic to $\Gamma^{ \pm}$in homology class $A \in H_{2}\left(Y, \Gamma^{-} \cup \Gamma^{+}\right)$.

$$
p^{k, l}\left(q^{\Gamma^{+}}\right)=\sum_{\left|\Gamma^{-}\right|=1} \# \overline{\mathcal{M}}_{Y, A}\left(\Gamma^{+}, \Gamma^{-}\right) \frac{T^{\int_{A}} d_{\alpha}}{\mu_{\Gamma+} \mu_{\Gamma-} \kappa_{\Gamma}-} q^{\Gamma^{-}} .
$$

RSFT as a $B L_{\infty}$-algebra

$\overline{\mathcal{M}}_{Y, A}\left(\Gamma^{+}, \Gamma^{-}\right)=$compactified moduli space of rational curves in $\mathbb{R} \times Y$ asymptotic to $\Gamma^{ \pm}$in homology class $A \in H_{2}\left(Y, \Gamma^{-} \cup \Gamma^{+}\right)$.

$$
p^{k, l}\left(q^{\Gamma^{+}}\right)=\sum_{\left|\Gamma_{-}\right|=1} \# \overline{\mathcal{M}}_{Y, A}\left(\Gamma^{+}, \Gamma^{-}\right) \frac{T_{A}^{\int_{A}} d_{\alpha}}{\mu_{\Gamma+} \mu_{\Gamma-} \kappa_{\Gamma-}} q^{\Gamma^{-}} .
$$

Fix a point o in $Y, \overline{\mathcal{M}}_{Y, A, o}\left(\Gamma^{+}, \Gamma^{-}\right)=$rational curves passing through o.

$$
p_{0}^{\kappa, l}\left(q^{\Gamma^{+}}\right)=\sum_{\left|\Gamma^{-}\right|=1} \# \overline{\mathcal{M}}_{Y, A, o}\left(\Gamma^{+}, \Gamma^{-}\right) \frac{T_{\int_{A}} d \alpha}{\mu_{\Gamma^{+}} \mu_{\Gamma^{-}-\kappa_{\Gamma^{-}}}} q^{\Gamma^{-}} .
$$

RSFT as a $B L_{\infty}$-algebra

($X, \omega=d \lambda$) exact cobordism from $\left(Y_{-}, \alpha_{-}\right)$to $\left(Y_{+}, \alpha_{+}\right)$.

$$
\phi^{k, l}\left(q^{\Gamma^{+}}\right)=\sum_{\left|\Gamma^{-}\right|=\mid} \# \overline{\mathcal{M}}_{X, A}\left(\Gamma^{+}, \Gamma^{-}\right) \frac{T \int_{A} \omega}{\mu_{\Gamma^{+}+\mu_{\Gamma}-\kappa_{\Gamma^{-}}}} q^{\Gamma^{-}}
$$

If $Y_{-}=\varnothing$, i.e. X filling, define $\epsilon^{k}=\phi^{k, 0}$ as linearization.

RSFT as a $B L_{\infty}$-algebra

($X, \omega=d \lambda$) exact cobordism from $\left(Y_{-}, \alpha_{-}\right)$to $\left(Y_{+}, \alpha_{+}\right)$.

$$
\phi^{k, l}\left(q^{\Gamma^{+}}\right)=\sum_{\left|\Gamma^{-}\right|=1} \# \overline{\mathcal{M}}_{X, A}\left(\Gamma^{+}, \Gamma^{-}\right) \frac{T_{A} \omega}{\mu_{\Gamma}+\mu_{\Gamma}-\kappa_{\Gamma}-} q^{\Gamma^{-}} .
$$

If $Y_{-}=\varnothing$, i.e. X filling, define $\epsilon^{k}=\phi^{k, 0}$ as linearization.
Fix points $o_{ \pm}$in $Y_{ \pm}$, and a curve γ in X joining them, $\overline{\mathcal{M}}_{X, A, \gamma}\left(\Gamma^{+}, \Gamma^{-}\right)=$ moduli of curves in X passing through γ.

$$
\phi_{\bullet}^{k, l}\left(q^{\Gamma^{+}}\right)=\sum_{\left|\Gamma^{-}\right|=1} \# \overline{\mathcal{M}}_{X, A, \gamma}\left(\Gamma^{+}, \Gamma^{-}\right) \frac{T_{A_{A} \omega}}{\mu_{\Gamma^{+}} \mu_{\Gamma^{-}} \kappa_{\Gamma^{-}}} q^{\Gamma^{-}} .
$$

APT and P

Definition

- The algebraic planar torsion of (Y, ξ) is the torsion

$$
\operatorname{APT}(Y, \xi)=T\left(V_{\alpha}, \hat{p}\right)
$$

This is independent of α.

APT and P

Definition

- The algebraic planar torsion of (Y, ξ) is the torsion

$$
\operatorname{APT}(Y, \xi)=T\left(V_{\alpha}, \hat{p}\right)
$$

This is independent of α.

- The planarity of (Y, ξ) is the maximal order over all augmentations,

$$
P(Y):=\max _{\epsilon \in \operatorname{Aug}_{\mathbb{Q}}\left(V_{\alpha}\right)}\left\{O\left(V_{\alpha}, \epsilon, \hat{p}_{\bullet}\right)\right\}
$$

where the maximum of an empty set is defined to be zero. This is independent of α.

linearized contact homology

W filling of $(Y, \xi), \epsilon=\epsilon_{W}$ induced augmentation on $C H A(Y)$.

$$
\leadsto H_{*}\left(\bar{B}^{1} V_{\alpha}, \hat{\ell}_{\epsilon}\right)=H_{*}\left(V_{\alpha}, \ell_{\epsilon}^{1}\right) \cong L C H_{*}(W) \cong S H_{+, S^{1}}^{2 n-3-*}(W)
$$

linearized contact homology, or positive S^{1}-equivariant symplectic cohomology (Bourgeois-Oancea).

linearized contact homology

W filling of $(Y, \xi), \epsilon=\epsilon_{W}$ induced augmentation on $C H A(Y)$.

$$
\leadsto H_{*}\left(\bar{B}^{1} V_{\alpha}, \hat{\ell}_{\epsilon}\right)=H_{*}\left(V_{\alpha}, \ell_{\epsilon}^{1}\right) \cong L C H_{*}(W) \cong S H_{+, S^{1}}^{2 n-3-*}(W)
$$

linearized contact homology, or positive S^{1}-equivariant symplectic cohomology (Bourgeois-Oancea). These are $\mathbb{Q}[U]$-modules, and

- U has degree 2 on $H_{*}\left(V_{\alpha}, \ell_{\epsilon}^{1}\right)$;
- for each x, there exists k such that $U^{k}(x)=0$.

Moreover, the U-map makes sense for arbitrary augmentations on $H_{*}\left(V_{\alpha}, \ell_{\epsilon}^{1}\right)$.

SD

Let $\left(Y, \xi=\right.$ ker α) with $P(Y)=1, o \in Y, \epsilon$ an augmentation, and $\ell_{\bullet}^{1}, \epsilon$ associated pointed map.

Definition

The (ϵ, o)-order of semi-dilation of (Y, ξ) is

$$
\mathrm{SD}(Y, \xi, \epsilon, O)=
$$

$\min \left\{k\right.$: there exists $x \in H_{*}\left(V_{\alpha}, \ell_{\epsilon}^{1}\right)$ with $\left.U^{k+1}(x)=0, \ell_{\ell, \epsilon}^{1}(x)=1\right\}$.
The order of semi-dilation of (Y, ξ) is

$$
\operatorname{SD}(Y, \xi)=\max \left\{\operatorname{SD}(Y, \xi, \epsilon, o): \epsilon \in \operatorname{Aug}_{\mathbb{Q}}\left(V_{\alpha}\right), o \in Y\right\} .
$$

Only depends on the contact structure, and is functorial.

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).
- APT and P have been completely implemented and rigorosuly defined. SD can be implemented with current technology (work in progress; relies on implementing linearized contact homology in Pardon's VFC).

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).
- APT and P have been completely implemented and rigorosuly defined. SD can be implemented with current technology (work in progress; relies on implementing linearized contact homology in Pardon's VFC).
- invariants can be used to obstruct existence of cobordisms and measure complexity of contact manifolds.

Summary

- RSFT can be defined as a $B L_{\infty}$-algebra (cf. Eliashberg-GiventalHofer formalism).
- This notion captures: differentials, morphisms, and augmentations, and their pointed versions.
- Can define two invariants algebraically (torsion, order).
- These translate to three geometric invariants (APT, P, SD).
- These are functorial, and independent on contact form. The invariants are not expected to depend on virtual machinery: functoriality and our examples are independent of it under minimal requirements (i.e. geometric count = virtual count when transversality holds).
- APT and P have been completely implemented and rigorosuly defined. SD can be implemented with current technology (work in progress; relies on implementing linearized contact homology in Pardon's VFC).
- invariants can be used to obstruct existence of cobordisms and measure complexity of contact manifolds.
- Invariants can be computed or estimated explicitly.

Thank you!

