
Symplectic geometry of Anosov flows in dimension
three

Agustin Moreno
IAS/Universität Heidelberg

J.w. Kai Cieliebak (Augsburg), Oleg Lazarev (UMass Boston), Thomas
Massoni (Princeton)



Objective: illustrate the symplectic geometry of
Anosov flows in dimension three.

Anosov flow on M3

Contact forms α˘ on M

λ “ esα` ` e´sα´ on V “ R ˆ M

Symplectic invariants of pV , λq

Anosov theory

Symplectic geometry



Liouville domains
A Liouville domain is pW , ω “ dλq with contact boundary pM “

BW , ξ “ kerαq.

(W,ω=dλ)

(M,ξ=ker(α))

A Liouville domain.



Anosov-Liouville domains

V=[-1,1]xM

skel(V)={0}xM

(M ,α ) (M ,α )

An Anosov-Liouville domain V “ r´1,1s ˆ M contracts to the skeleton
skelpV q “ t0u ˆ M under the negative Liouville flow, which is Anosov on
skelpV q (algebraic case). Note V is non-Weinstein.



Definition

An Anosov-Liouville structure on Rs ˆ M3 is a smooth Liouville form
λ of the form

λ “ e´sα´ ` esα` (1)

where pα´, α`q are contact forms satisfying:
1. ξ˘ “ kerα˘ are transversal.
2. The 1-distribution ξ´ X ξ` is generated by an Anosov vector field

X .
3. vol˘ “ α˘ ^ dα˘ induce opposite orientations on M.

The vector field X (or its flow ϕt ) is supported by the Anosov-Liouville
structure. The pair pξ` “ kerα`, ξ´ “ kerα´q is a bi-contact structu-
re, and pα´, α`q is a Liouville pair.
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Bi-contact structure

ξξ ---
E

s
E

u

R-R--

X

The bi-contact structure ξ` X ξ´ “ xXy. In the algebraic cases, R˘ P ξ¯. In
general, both transverse to Eu,Es, then α˘ hypertight by tautness of
Fu,Fs.



Symplectic invariants of an Anosov flow

Theorem (Massoni ’22)
Given ϕt : M Ñ M a C8 Anosov flow on a closed 3-fold, the space of
Anosov-Liouville structures on V “ R ˆ M that support ϕt is
non-empty and contractible. The map

tAnosov-Liouville structuresu Ñ tAnosov flowsu

M

reparam.

λ “ esα` ` e´sα´ ÞÑ ξ` X ξ´

is a fibration with contractible fibers, then it is a homotopy equivalence.

The topology is the C8-topology (cf. structural stability).

Corollary (Massoni ’22)
If λ supports ϕt , every symplectic invariant of pV , λq is an invariant of
the flow, up to homotopies in the space of Anosov flows.
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Symplectic invariants

Some examples of symplectic invariants:
1. Symplectic cohomology of pV , λq.

2. Rabinowitz–Floer cohomology of pV , λq.

3. The wrapped Fukaya category WpV q.
...

Plus several algebraic structures (products, open-closed map,...).

With Kai Cieliebak, Oleg Lazarev and Thomas Massoni [CLMM] we
calculated invariants of the classical algebraic cases.
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The orbit category: Lagrangians on V

Given X Anosov supported by λ “ esα` ` e´sα´, xXy “ ξ` X ξ´,

ñ Every closed orbit Λ is Legendrian for ξ˘.

LΛ :“ R ˆ Λ ñ λ|LΛ
” 0 ñ ω|LΛ

“ dλ|LΛ
” 0

ñ LΛ Lagrangian with Legendrian boundary on B8V “

t˘8u ˆ M.

In [CLMM] we studied the A8 sub-category of WpV q, generated by the
orbits of the flow, the orbit category W0pV q.
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Open-closed map

We have LΛ is contained in the unstable manifold of Λ. By analogy to
the Weinstein case, we can ask:

Q: Does the family tLΛu (split-)generate WpV q?

First try: Abouzaid’s generation criterion. However:

Theorem (Cieliebak–Lazarev–Massoni–M. ’22)
The open-closed map OC0 : HH˚´2pW0pV qq Ñ SH˚pV q does not hit
the unit. Moreover:

Any two Lagrangians LΛ,LΛ1 with Λ ‰ Λ1 are not quasi-isomorphic
in WpV q,
W0pV q is not split-generated by finitely many objects LΛ,
W0pV q is not homologically smooth.
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Dichotomy

Corollary
We have the two possibilities:

The family tLΛu split-generate, in which case WpV q is not
homologically smooth; or
There exist “mystery” Lagrangians.

Remark:
In all examples we considered, we do not know how to construct
Lagrangians which are not expected to lie in the split closure of
W0pV q.
The first option would be in stark contrast to the Weinstein case.
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Ingredients for proof

a1

a2

a3

an

b

b1
b

b3

2

n

X

X

X

X

F ws

F ws

F ws

u

The key dynamical input is that the weak stable/unstable foliations are taut,
and hence admit no contractible transverse loops. A disk as above can be
perturbed to induce such loop.



Ingredients for proof
This precludes most contributions to OC0 : HH˚´2pW0pV qq Ñ SH˚pV q,
which splits into contractible and non-contractible parts,

OC0 “ OCc
0 ‘ OCnc

0 .

Here,

OCc
0 : HHc

˚´2 Ñ SH˚
c pV q – H˚pMq,

OCnc
0 : HHnc

˚´2 Ñ SH˚
ncpV q.

Moreover, there is an isomorphism

HHc
˚ –

à

Λ

HH˚pC˚pS1qq.

This is supported in degrees 0,1 then

ImpOCc
0q Ď H2pM;Zq ‘ H3pM;Zq does not contain the unit.
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Ingredients for proof

C collection of orbits, Λ R C, C1 “ A Y tΛu. Let A,A1 full subcategories
generated by C, C1.

The map induced by inclusion

ι˚ : HH˚pAq Ñ HH˚pA1q

splits as a sum

ι˚ “ ιc˚ ‘ ιnc
˚

with
ιc˚ : HHc

˚pAq ãÑ HHc
˚pAq ‘ W˚ “ HHc

˚pA1q

ñ ι˚ not an isomorphism.

ñ Λ not generated by C.
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Basic examples: algebraic flows

Anosov theory Symplectic geometry

Geodesic flow
of hyperbolic surface McDuff domain

Suspension of Anosov
A : T2 Ñ T2 T2-bundle domain



McDuff domains
pΣ,gq hyperbolic surface, σ “ volg P Ω2pΣq. The magnetic cotangent
bundle is

pT ˚Σ, ωσ “ dλstd ` π˚σq,

with π : T ˚Σ Ñ Σ natural projection.

On T ˚ΣzΣ – R ˆ S˚Σ:
π˚σ “ dα´ is exact,
λstd “ rα`, with α` “ λstd |S˚Σ,

α´ “ connection form with curvature σ.

ù pV , λσq “ pR ˆ S˚Σ, λstd ` α´q is Liouville, dλσ “ ωσ.

pξ`, ξ´q “ pkerα`, kerα´q

bi-contact structure, supporting the conormal geodesic flow. Lagran-
gian cylinders are LΛγ “ R ˆ Λγ , Λγ = conormal lift of geodesic γ.
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McDuff domains

r

Σ

Magnetic 
Liouville
vector field 
{r=1}=S*ΣStandard

Liouville
vector field



McDuff domains
The Hamiltonian flow of H : pT ˚Σ, ωσq Ñ R, Hpq,pq “

}p}2

2 is the
magnetic flow.

If Mr “ t}p} “ ru “ H´1pr2{2q,

kerωσ|Mr “ ker prdα` ` dα´q “ ker

ˆ

dα` `
1
r

dα´

˙

,

with integral curves the magnetic geodesics of geodesic curvature
kg ” 1{r .

kg=0
kg=1 =∞kg>1kg>>1=0

kg=∞
r

r

r

α- -α-
"prequantization" flow
= Reeb flow of = Reeb flow of= Reeb flow

geodesic flowhorocycle flow

The magnetic geodesics in the universal cover H2.
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T2-bundle domains

On R3
x ,y ,z , let

α˘ “ ˘ezdx ` e´zdy .

Let A P SLp2,Zq “ MCG`pT2q hyperbolic, A “ diagpeτ ,e´τ q, τ ‰ 0.

Then α˘ gives Liouville pair on

E “ R3{px , y , zq „ pA ¨ px , yq, z ´ τq,

a T2-bundle over S1 with hyperbolic monodromy. The pair pξ`, ξ´q “

pkerα`, kerα´q supports the suspension of A.
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Closed Lagrangians

Theorem (Cieliebak–Lazarev–Massoni–M. ’22)
(McDuff domains) In every McDuff domain, there exist 3g ´ 3
pairwise disjoint exact Lagrangian tori in distinct homotopy
classes, where g denotes the genus of Σ.
(Torus bundle domains) In every torus bundle domain, there are
no closed exact Lagrangian submanifolds which are either
orientable, projective planes, or Klein bottles.



Idea of proof

In the McDuff domains, the tori are Lagrangian isotopic to T2 –

S˚Σ|γ where γ Ă Σ geodesic (pair of pants decomposition ù

3g ´ 3 geodesics).

Remark: Good evidence that these are split-generated by the two
orbit cylinders LΛγ ,LΛγ

.
In the torus bundle domains, if L ãÑ V is exact Lagrangian (orien-
table, projective plane or Klein bottle), examining the image of
π1pLq Ñ π1pV q, L lifts to either

‚ pT ˚pR ˆ S1q, λcanq; or
‚ a subset of pT ˚T2, λcanq disjoint from zero section.

But no closed exact Lagrangian in either of these (by Lalonde–
Sikorav, and Gromov, respectively).
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Symplectic invariants: closed strings

Theorem (Cieliebak–Lazarev–Massoni–M. ’22)

V 2n “ r´1,1s ˆ M Liouville domain such that M˘ “ t˘1u ˆ V is
hypertight. Then:

(Rabinowitz Floer cohomology) We have

RFH˚pV q – RFH˚pM´q ‘ RFH˚pM`q,

as rings.
(Symplectic cohomology) We have

SH˚pV q “ SH˚
´pV q ‘ SH˚

0 pV q ‘ SH˚
`pV q,

as Z-modules, with SH˚
0 pV q – H˚pMq.



Fiber product structure on symplectic cohomology

Assume that free homotopy classes of orbits on M` are distinct from
those on M´. Then:

A0 :“ SH˚
0 and A˘ :“ SH˚

0 ‘ SH˚
˘ are sub-Z-algebras of

A :“ SH˚;
I˘ :“ SH˚

˘ Ă A˘ Ă A are ideals such that I´ X I` “ 0;
A˘{I˘ – A0.

That is, we have an algebra fiber product structure on symplectic co-
homology:

A A´

A` A0

where maps are quotient and projection maps.



Fiber product structure on symplectic cohomology

Assume that free homotopy classes of orbits on M` are distinct from
those on M´. Then:

A0 :“ SH˚
0 and A˘ :“ SH˚

0 ‘ SH˚
˘ are sub-Z-algebras of

A :“ SH˚;
I˘ :“ SH˚

˘ Ă A˘ Ă A are ideals such that I´ X I` “ 0;
A˘{I˘ – A0.

That is, we have an algebra fiber product structure on symplectic co-
homology:

A A´

A` A0

where maps are quotient and projection maps.



Closed string invariants of McDuff domains

Corollary (Cieliebak–Lazarev–Massoni–M. ’22)
V “ R ˆ S˚Σ McDuff domain. Then

SH˚pV q – tH˚pMqrts ‘ H˚pMq ‘ H2´˚pLncΣq,

where |t | “ 0 (S1-fibre) and LncΣ is the space of non-contractible
loops on Σ.

As subrings:
SH˚

0´
pV q – H˚pMqrts and SH˚

´pV q – tH˚pMqrts with product as
polynomial rings;
SH˚

0`
pV q – qHě0

2´˚
pLΣq the nonnegative action part of Rabinowitz

loop homology with Cieliebak–Hingston–Oancea product;
SH˚

`pV q – H2´˚pLncΣq with the loop product.
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Closed string invariants of T2-bundle domains

Corollary (Cieliebak–Lazarev–Massoni–M. ’22)

V “ r´1,1s ˆ M a T2-bundle domain. Then

SH˚pV q –
à

Γ

H˚
`

S1˘

‘ H˚pMq ‘
à

Γ

H˚
`

S1˘

,

where Γ “ Q X r0,1q.

Remark: Products are a bit more mysterious (they are very restricted,
but contributing Floer solutions might or might not exist).



Open string products

We also have analogous fiber product descriptions for the open string
products on wrapped Floer cohomology, i.e. on

A “
à

Λ,Λ1

HW ˚pLΛ,LΛ1q,

which extends to a fiber product description of the cohomology cate-
gory H˚W0 as

H˚W0 H˚W´
0

H˚W`
0 H˚Wc

0

where each category above has the same objects but different morphism
groups.



McDuff domains: open string products

For the McDuff domains, consider the product m on

A “
à

Λ,Λ1

HW ˚pLΛ,LΛ1q,

The ideals I`, I´ Ă A are generated by
Binormal geodesic chords between geodesics (plus side); and
intersection points between geodesics with positive integer multi-
plicities (minus side).



McDuff domains: open string products
The product m` on I` (geodesic side) is determined by a string co-
bracket operation ∆ : I` Ñ I` b I`.

c
c1

0

c2
Δ(c)=   c  cΣ 1 2

ɣ

2ɣ

1

1

ɣ

c   ɣ

The string cobracket ∆.

The coefficients of m` are:

xm`pc1, c2q, c3y “ ˘x∆pc1q, c3 b c2y ˘ x∆pc2q, c1 b c3y.
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2ɣ

1

1

ɣ

c   ɣ

The string cobracket ∆.

The coefficients of m` are:

xm`pc1, c2q, c3y “ ˘x∆pc1q, c3 b c2y ˘ x∆pc2q, c1 b c3y.



McDuff domains: open string products

u
p
0,2

p
1,2

p
0,1

γ0γ1

γ2

Σ

The product m´ on I´ is given by counting immersed geodesic triangles.
Multiplicities at the intersection points add up.



Some open questions

(I) If two smooth Anosov flows are topologically equivalent1, are their
orbit categories quasi-equivalent? And the reciprocal?

(II) Anosov flows beyond algebraic cases are obtained e.g. by sur-
gery. What is the effect of (Fried–Goodman) surgery on the sym-
plectic invariants?

(III) Are the Donnay–Pugh examples of embedded surfaces in R3 with
Anosov geodesic flow, homotopic to Anosov geodesic flows of
hyperbolic metrics?

(IV) What are the symplectic invariants of the Franks–Williams exam-
ple?

1I.e. there exists a homeomorphism sending oriented orbits to oriented orbits.



Thank you!


