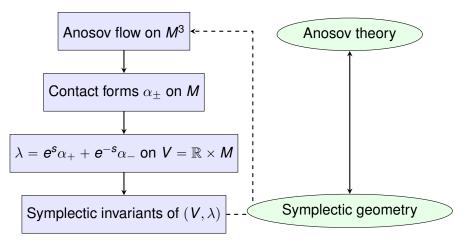
Symplectic geometry of Anosov flows in dimension three

Agustin Moreno IAS/Universität Heidelberg

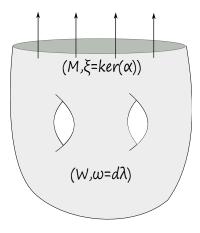
J.w. Kai Cieliebak (Augsburg), Oleg Lazarev (UMass Boston), Thomas Massoni (Princeton)

Objective: illustrate the symplectic geometry of Anosov flows in dimension three.



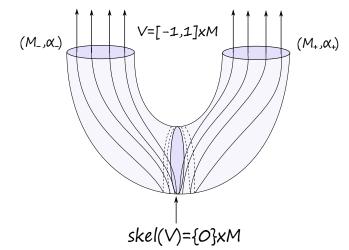
Liouville domains

A Liouville domain is $(W, \omega = d\lambda)$ with contact boundary $(M = \partial W, \xi = \ker \alpha)$.



A Liouville domain.

Anosov-Liouville domains



An **Anosov-Liouville** domain $V = [-1, 1] \times M$ contracts to the skeleton skel(V) = {0} × M under the negative Liouville flow, which is Anosov on skel(V) (*algebraic* case). Note V is **non-Weinstein**.

Definition

An **Anosov-Liouville structure** on $\mathbb{R}_s \times M^3$ is a smooth Liouville form λ of the form

$$\lambda = \boldsymbol{e}^{-\boldsymbol{s}} \alpha_{-} + \boldsymbol{e}^{\boldsymbol{s}} \alpha_{+} \tag{1}$$

where (α_{-}, α_{+}) are contact forms satisfying:

- 1. $\xi_{\pm} = \ker \alpha_{\pm}$ are transversal.
- 2. The 1-distribution $\xi_{-} \cap \xi_{+}$ is generated by an Anosov vector field *X*.
- 3. $vol_{\pm} = \alpha_{\pm} \wedge d\alpha_{\pm}$ induce opposite orientations on *M*.

Definition

An **Anosov-Liouville structure** on $\mathbb{R}_s \times M^3$ is a smooth Liouville form λ of the form

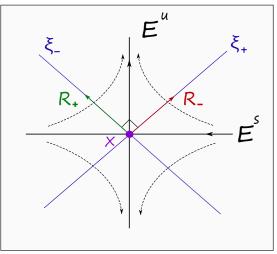
$$\lambda = \boldsymbol{e}^{-\boldsymbol{s}} \alpha_{-} + \boldsymbol{e}^{\boldsymbol{s}} \alpha_{+} \tag{1}$$

where (α_{-}, α_{+}) are contact forms satisfying:

- 1. $\xi_{\pm} = \ker \alpha_{\pm}$ are transversal.
- 2. The 1-distribution $\xi_{-} \cap \xi_{+}$ is generated by an Anosov vector field *X*.
- 3. vol_± = $\alpha_{\pm} \wedge d\alpha_{\pm}$ induce opposite orientations on *M*.

The vector field *X* (or its flow ϕ_t) is **supported** by the Anosov-Liouville structure. The pair ($\xi_+ = \ker \alpha_+, \xi_- = \ker \alpha_-$) is a **bi-contact structu-re**, and (α_-, α_+) is a **Liouville pair**.

Bi-contact structure



The bi-contact structure $\xi_+ \cap \xi_- = \langle X \rangle$. In the algebraic cases, $R_{\pm} \in \xi_{\mp}$. In general, both transverse to E^u, E^s , then α_{\pm} hypertight by tautness of $\mathcal{F}^u, \mathcal{F}^s$.

Symplectic invariants of an Anosov flow

Theorem (Massoni '22)

Given $\phi_t : M \to M$ a C^{∞} Anosov flow on a closed 3-fold, the space of Anosov-Liouville structures on $V = \mathbb{R} \times M$ that support ϕ_t is non-empty and contractible. The map

{Anosov-Liouville structures} \rightarrow {Anosov flows} / reparam.

$$\lambda = \mathbf{e}^{\mathbf{s}} \alpha_{+} + \mathbf{e}^{-\mathbf{s}} \alpha_{-} \mapsto \xi_{+} \cap \xi_{-}$$

is a fibration with contractible fibers, then it is a homotopy equivalence.

The topology is the C^{∞} -topology (cf. structural stability).

Symplectic invariants of an Anosov flow

Theorem (Massoni '22)

Given $\phi_t : M \to M$ a C^{∞} Anosov flow on a closed 3-fold, the space of Anosov-Liouville structures on $V = \mathbb{R} \times M$ that support ϕ_t is non-empty and contractible. The map

{Anosov-Liouville structures} \rightarrow {Anosov flows} / reparam.

$$\lambda = \boldsymbol{e}^{\boldsymbol{s}} \alpha_+ + \boldsymbol{e}^{-\boldsymbol{s}} \alpha_- \mapsto \xi_+ \cap \xi_-$$

is a fibration with contractible fibers, then it is a homotopy equivalence.

The topology is the C^{∞} -topology (cf. structural stability).

Corollary (Massoni '22)

If λ supports ϕ_t , every symplectic invariant of (V, λ) is an **invariant of** the flow, up to homotopies in the space of Anosov flows.

Symplectic invariants

÷

Some examples of symplectic invariants:

- 1. Symplectic cohomology of (V, λ) .
- 2. Rabinowitz–Floer cohomology of (V, λ) .
- 3. The wrapped Fukaya category $\mathcal{W}(V)$.

Symplectic invariants

.

Some examples of symplectic invariants:

- 1. Symplectic cohomology of (V, λ) .
- 2. Rabinowitz–Floer cohomology of (V, λ) .
- 3. The wrapped Fukaya category $\mathcal{W}(V)$.

Plus several algebraic structures (products, open-closed map,...).

With Kai Cieliebak, Oleg Lazarev and Thomas Massoni [CLMM] we calculated invariants of the classical algebraic cases.

The orbit category: Lagrangians on V

Given X Anosov supported by $\lambda = e^{s}\alpha_{+} + e^{-s}\alpha_{-}, \langle X \rangle = \xi_{+} \cap \xi_{-},$

 \Rightarrow Every closed orbit Λ is **Legendrian** for ξ_{\pm} .

$$\mathcal{L}_{\Lambda} := \mathbb{R} \times \Lambda \Rightarrow \lambda|_{\mathcal{L}_{\Lambda}} \equiv \mathbf{0} \Rightarrow \omega|_{\mathcal{L}_{\Lambda}} = \mathbf{0} \lambda|_{\mathcal{L}_{\Lambda}} \equiv \mathbf{0}$$

The orbit category: Lagrangians on V

Given X Anosov supported by $\lambda = e^{s}\alpha_{+} + e^{-s}\alpha_{-}, \langle X \rangle = \xi_{+} \cap \xi_{-},$

 \Rightarrow Every closed orbit Λ is **Legendrian** for ξ_{\pm} .

$$\mathcal{L}_{\Lambda} := \mathbb{R} \times \Lambda \Rightarrow \lambda|_{\mathcal{L}_{\Lambda}} \equiv \mathbf{0} \Rightarrow \omega|_{\mathcal{L}_{\Lambda}} = \mathbf{0} \lambda|_{\mathcal{L}_{\Lambda}} \equiv \mathbf{0}$$

 $\Rightarrow \mathcal{L}_{\Lambda}$ Lagrangian with Legendrian boundary on $\partial_{\infty} V = \{\pm \infty\} \times M$.

The orbit category: Lagrangians on V

Given X Anosov supported by $\lambda = e^{s}\alpha_{+} + e^{-s}\alpha_{-}, \langle X \rangle = \xi_{+} \cap \xi_{-},$

 \Rightarrow Every closed orbit Λ is **Legendrian** for ξ_{\pm} .

$$\mathcal{L}_{\Lambda} := \mathbb{R} \times \Lambda \Rightarrow \lambda|_{\mathcal{L}_{\Lambda}} \equiv \mathbf{0} \Rightarrow \omega|_{\mathcal{L}_{\Lambda}} = \mathbf{0} \lambda|_{\mathcal{L}_{\Lambda}} \equiv \mathbf{0}$$

⇒ \mathcal{L}_{Λ} Lagrangian with Legendrian boundary on $\partial_{\infty} V = {\pm \infty} \times M$.

In [CLMM] we studied the A_{∞} sub-category of $\mathcal{W}(V)$, generated by the orbits of the flow, the **orbit category** $\mathcal{W}_0(V)$.

Open-closed map

We have \mathcal{L}_{Λ} is contained in the unstable manifold of Λ . By analogy to the Weinstein case, we can ask:

Q: Does the family $\{\mathcal{L}_{\Lambda}\}$ (split-)generate $\mathcal{W}(V)$?

Open-closed map

We have \mathcal{L}_{Λ} is contained in the unstable manifold of Λ . By analogy to the Weinstein case, we can ask:

Q: Does the family $\{\mathcal{L}_{\Lambda}\}$ (split-)generate $\mathcal{W}(V)$?

First try: Abouzaid's generation criterion. However:

Theorem (Cieliebak-Lazarev-Massoni-M. '22)

The open-closed map $\mathcal{OC}_0: HH_{*-2}(\mathcal{W}_0(V)) \to SH^*(V)$ does **not** hit the unit. Moreover:

- Any two Lagrangians L_Λ, L_{Λ'} with Λ ≠ Λ' are **not** quasi-isomorphic in W(V),
- *W*₀(*V*) is **not** split-generated by finitely many objects *L*_Λ,
- $W_0(V)$ is **not** homologically smooth.

Dichotomy

Corollary

We have the two possibilities:

- The family {L_Λ} split-generate, in which case W(V) is not homologically smooth; or
- There exist "mystery" Lagrangians.

Dichotomy

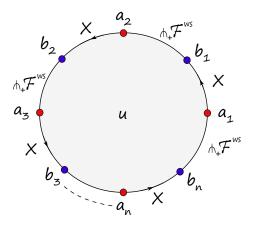
Corollary

We have the two possibilities:

- The family {L_Λ} split-generate, in which case W(V) is not homologically smooth; or
- There exist "mystery" Lagrangians.

Remark:

- In all examples we considered, we do not know how to construct Lagrangians which are not expected to lie in the split closure of W₀(V).
- The first option would be in stark contrast to the Weinstein case.



The key dynamical input is that the weak stable/unstable foliations are *taut*, and hence admit no contractible transverse loops. A disk as above can be perturbed to induce such loop.

This precludes most contributions to \mathcal{OC}_0 : $HH_{*-2}(\mathcal{W}_0(V)) \rightarrow SH^*(V)$, which splits into *contractible* and *non-contractible* parts,

$$\mathcal{OC}_0 = \mathcal{OC}_0^c \oplus \mathcal{OC}_0^{nc}.$$

Here,

$$\begin{array}{l} \mathcal{OC}_0^c:HH_{*-2}^c \to SH_c^*(V) \cong H^*(M), \\ \mathcal{OC}_0^{nc}:HH_{*-2}^{nc} \to SH_{nc}^*(V). \end{array}$$

This precludes most contributions to \mathcal{OC}_0 : $HH_{*-2}(\mathcal{W}_0(V)) \rightarrow SH^*(V)$, which splits into *contractible* and *non-contractible* parts,

$$\mathcal{OC}_0 = \mathcal{OC}_0^c \oplus \mathcal{OC}_0^{nc}.$$

Here,

$$\begin{array}{l} \mathcal{OC}_0^c:H\!H^c_{*-2} \to S\!H^*_c(V) \cong H^*(M), \\ \mathcal{OC}_0^{nc}:H\!H^{nc}_{*-2} \to S\!H^*_{nc}(V). \end{array}$$

Moreover, there is an isomorphism

$$HH^c_* \cong \bigoplus_{\Lambda} HH_*(C^*(S^1)).$$

This is supported in degrees 0, 1 then

 $\operatorname{Im}(\mathcal{OC}_0^c) \subseteq H^2(M; \mathbb{Z}) \oplus H^3(M; \mathbb{Z})$ does not contain the unit.

C collection of orbits, $\Lambda \notin C$, $C' = A \cup \{\Lambda\}$. Let A, A' full subcategories generated by C, C'.

C collection of orbits, $\Lambda \notin C$, $C' = A \cup \{\Lambda\}$. Let A, A' full subcategories generated by C, C'. The map induced by inclusion

$$\iota_*: HH_*(\mathcal{A}) \to HH_*(\mathcal{A}')$$

splits as a sum

$$\iota_* = \iota^{\mathbf{C}}_* \oplus \iota^{\mathbf{nc}}_*$$

with

$$\iota^{\mathbf{c}}_{*}:\mathit{HH}^{\mathbf{c}}_{*}(\mathcal{A}) \hookrightarrow \mathit{HH}^{\mathbf{c}}_{*}(\mathcal{A}) \oplus \mathit{W}_{*} = \mathit{HH}^{\mathbf{c}}_{*}(\mathcal{A}')$$

C collection of orbits, $\Lambda \notin C$, $C' = A \cup \{\Lambda\}$. Let A, A' full subcategories generated by C, C'. The map induced by inclusion

$$\iota_*: HH_*(\mathcal{A}) \to HH_*(\mathcal{A}')$$

splits as a sum

 $\iota_* = \iota^{\mathbf{C}}_* \oplus \iota^{\mathbf{nc}}_*$

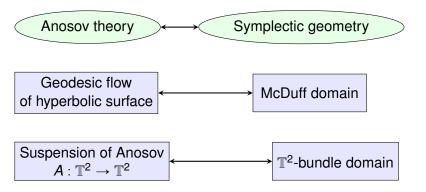
with

$$\iota^{\mathbf{c}}_{*}: \mathit{HH}^{\mathbf{c}}_{*}(\mathcal{A}) \hookrightarrow \mathit{HH}^{\mathbf{c}}_{*}(\mathcal{A}) \oplus \mathit{W}_{*} = \mathit{HH}^{\mathbf{c}}_{*}(\mathcal{A}')$$

 $\Rightarrow \iota_*$ **not** an isomorphism.

 $\Rightarrow \Lambda$ **not** generated by C.

Basic examples: algebraic flows



 (Σ, g) hyperbolic surface, $\sigma = vol_g \in \Omega^2(\Sigma)$. The **magnetic** cotangent bundle is

$$(T^*\Sigma, \omega_{\sigma} = \mathbf{d}\lambda_{\mathrm{std}} + \pi^*\sigma),$$

with $\pi : T^*\Sigma \to \Sigma$ natural projection.

 (Σ, g) hyperbolic surface, $\sigma = vol_g \in \Omega^2(\Sigma)$. The **magnetic** cotangent bundle is

$$(T^*\Sigma, \omega_{\sigma} = d\lambda_{\rm std} + \pi^*\sigma),$$

with $\pi : T^*\Sigma \to \Sigma$ natural projection.

On $T^*\Sigma \setminus \Sigma \cong \mathbb{R} \times S^*\Sigma$:

• $\pi^*\sigma = \mathbf{d}\alpha_-$ is exact,

•
$$\lambda_{std} = r\alpha_+$$
, with $\alpha_+ = \lambda_{std}|_{S^*\Sigma}$,

• α_{-} = connection form with curvature σ .

 (Σ, g) hyperbolic surface, $\sigma = vol_g \in \Omega^2(\Sigma)$. The **magnetic** cotangent bundle is

$$(T^*\Sigma, \omega_{\sigma} = d\lambda_{\rm std} + \pi^*\sigma),$$

with $\pi : T^*\Sigma \to \Sigma$ natural projection.

On $T^*\Sigma \setminus \Sigma \cong \mathbb{R} \times S^*\Sigma$:

• $\pi^* \sigma = \mathbf{d} \alpha_-$ is exact,

•
$$\lambda_{std} = r\alpha_+$$
, with $\alpha_+ = \lambda_{std}|_{S^*\Sigma}$,

• $\alpha_{-} =$ connection form with curvature σ .

 $\rightsquigarrow (V, \lambda_{\sigma}) = (\mathbb{R} \times S^*\Sigma, \lambda_{std} + \alpha_{-})$ is Liouville, $d\lambda_{\sigma} = \omega_{\sigma}$.

 (Σ, g) hyperbolic surface, $\sigma = vol_g \in \Omega^2(\Sigma)$. The **magnetic** cotangent bundle is

$$(T^*\Sigma, \omega_{\sigma} = d\lambda_{\rm std} + \pi^*\sigma),$$

with $\pi : T^*\Sigma \to \Sigma$ natural projection.

On $T^*\Sigma \subseteq \mathbb{R} \times S^*\Sigma$:

•
$$\pi^* \sigma = d\alpha_-$$
 is exact,

•
$$\lambda_{std} = r\alpha_+$$
, with $\alpha_+ = \lambda_{std}|_{S^*\Sigma}$,

• $\alpha_{-} =$ connection form with curvature σ .

 $\rightsquigarrow (V, \lambda_{\sigma}) = (\mathbb{R} \times S^*\Sigma, \lambda_{std} + \alpha_{-})$ is Liouville, $d\lambda_{\sigma} = \omega_{\sigma}$.

$$(\xi_+,\xi_-) = (\ker \alpha_+, \ker \alpha_-)$$

bi-contact structure, supporting the **conormal** geodesic flow. Lagrangian cylinders are $\mathcal{L}_{\Lambda_{\gamma}} = \mathbb{R} \times \Lambda_{\gamma}$, Λ_{γ} = conormal lift of geodesic γ .

Magnetic Liouville vector field Standard ${r=1}=S*\Sigma$ Liouville 🖌 [▲]vector field

The Hamiltonian flow of $H : (T^*\Sigma, \omega_{\sigma}) \to \mathbb{R}, H(q, p) = \frac{\|p\|^2}{2}$ is the magnetic flow.

The Hamiltonian flow of $H : (T^*\Sigma, \omega_{\sigma}) \to \mathbb{R}, H(q, p) = \frac{\|p\|^2}{2}$ is the magnetic flow. If $M_r = \{\|p\| = r\} = H^{-1}(r^2/2)$,

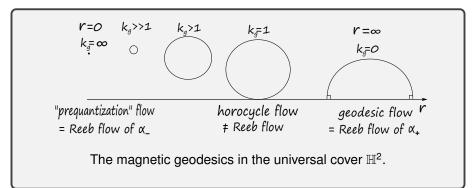
$$\ker \omega_{\sigma}|_{M_{r}} = \ker \left(r \mathbf{d} \alpha_{+} + \mathbf{d} \alpha_{-} \right) = \ker \left(\mathbf{d} \alpha_{+} + \frac{1}{r} \mathbf{d} \alpha_{-} \right),$$

with integral curves the magnetic geodesics of *geodesic curvature* $k_g \equiv 1/r$.

The Hamiltonian flow of $H : (T^*\Sigma, \omega_{\sigma}) \to \mathbb{R}, H(q, p) = \frac{\|p\|^2}{2}$ is the magnetic flow. If $M_r = \{\|p\| = r\} = H^{-1}(r^2/2)$,

$$\ker \omega_{\sigma}|_{M_{r}} = \ker \left(r d \alpha_{+} + d \alpha_{-} \right) = \ker \left(d \alpha_{+} + \frac{1}{r} d \alpha_{-} \right),$$

with integral curves the magnetic geodesics of *geodesic curvature* $k_g \equiv 1/r$.



$\mathbb{T}^2\text{-bundle domains}$

On $\mathbb{R}^3_{x,y,z}$, let

$$lpha_{\pm} = \pm e^z dx + e^{-z} dy.$$

Let $A \in SL(2, \mathbb{Z}) = MCG^+(\mathbb{T}^2)$ hyperbolic, $A = diag(e^{\tau}, e^{-\tau}), \tau \neq 0.$

\mathbb{T}^2 -bundle domains

On $\mathbb{R}^3_{x,y,z}$, let

$$\alpha_{\pm} = \pm e^z dx + e^{-z} dy.$$

Let $A \in SL(2, \mathbb{Z}) = MCG^+(\mathbb{T}^2)$ hyperbolic, $A = diag(e^{\tau}, e^{-\tau}), \tau \neq 0$. Then α_+ gives Liouville pair on

$$\boldsymbol{E} = \mathbb{R}^3/(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \sim (\boldsymbol{A} \cdot (\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{z} - \tau),$$

a \mathbb{T}^2 -bundle over \mathbb{S}^1 with hyperbolic monodromy. The pair $(\xi_+, \xi_-) = (\ker \alpha_+, \ker \alpha_-)$ supports the **suspension** of *A*.

Closed Lagrangians

Theorem (Cieliebak–Lazarev–Massoni–M. '22)

- (McDuff domains) In every McDuff domain, there exist 3g 3 pairwise disjoint exact Lagrangian tori in distinct homotopy classes, where g denotes the genus of Σ.
- (Torus bundle domains) In every torus bundle domain, there are no closed exact Lagrangian submanifolds which are either orientable, projective planes, or Klein bottles.

Idea of proof

• In the McDuff domains, the tori are Lagrangian isotopic to $\mathbb{T}^2 \cong S^*\Sigma|_{\gamma}$ where $\gamma \subset \Sigma$ geodesic (pair of pants decomposition $\rightsquigarrow 3g-3$ geodesics).

Idea of proof

• In the McDuff domains, the tori are Lagrangian isotopic to $\mathbb{T}^2 \cong S^*\Sigma|_{\gamma}$ where $\gamma \subset \Sigma$ geodesic (pair of pants decomposition $\longrightarrow 3g-3$ geodesics).

Remark: Good evidence that these are split-generated by the two orbit cylinders $\mathcal{L}_{\Lambda_{\gamma}}, \mathcal{L}_{\Lambda_{\overline{\gamma}}}$.

Idea of proof

• In the McDuff domains, the tori are Lagrangian isotopic to $\mathbb{T}^2 \cong S^*\Sigma|_{\gamma}$ where $\gamma \subset \Sigma$ geodesic (pair of pants decomposition $\longrightarrow 3g-3$ geodesics).

Remark: Good evidence that these are split-generated by the two orbit cylinders $\mathcal{L}_{\Lambda_{\gamma}}, \mathcal{L}_{\Lambda_{\overline{\gamma}}}$.

- In the torus bundle domains, if L → V is exact Lagrangian (orientable, projective plane or Klein bottle), examining the image of π₁(L) → π₁(V), L lifts to either
 - $(T^*(\mathbb{R} \times S^1), \lambda_{can});$ or
 - a subset of $(T^*\mathbb{T}^2, \lambda_{can})$ disjoint from zero section.

But no closed exact Lagrangian in either of these (by Lalonde–Sikorav, and Gromov, respectively).

Symplectic invariants: closed strings

Theorem (Cieliebak-Lazarev-Massoni-M. '22)

 $V^{2n} = [-1,1] \times M$ Liouville domain such that $M_{\pm} = \{\pm 1\} \times V$ is hypertight. Then:

• (Rabinowitz Floer cohomology) We have

 $RFH^*(V) \cong RFH^*(M_-) \oplus RFH^*(M_+),$

as rings.

• (Symplectic cohomology) We have

 $SH^*(V) = SH^*_-(V) \oplus SH^*_0(V) \oplus SH^*_+(V),$

as \mathbb{Z} -modules, with $SH_0^*(V) \cong H^*(M)$.

Fiber product structure on symplectic cohomology

Assume that free homotopy classes of orbits on M_+ are distinct from those on M_- . Then:

- $A_0 := SH_0^*$ and $A_{\pm} := SH_0^* \oplus SH_{\pm}^*$ are sub- \mathbb{Z} -algebras of $A := SH^*$;
- $I_{\pm} := SH_{\pm}^* \subset A_{\pm} \subset A$ are *ideals* such that $I_- \cap I_+ = 0$;

•
$$A_{\pm}/I_{\pm} \cong A_0$$

Fiber product structure on symplectic cohomology

Assume that free homotopy classes of orbits on M_+ are distinct from those on M_- . Then:

That is, we have an algebra **fiber product** structure on symplectic cohomology:

where maps are quotient and projection maps.

Closed string invariants of McDuff domains

Corollary (Cieliebak–Lazarev–Massoni–M. '22) $V = \mathbb{R} \times S^* \Sigma$ *McDuff domain. Then*

 $SH^*(V) \cong tH^*(M)[t] \oplus H^*(M) \oplus H_{2-*}(\mathcal{L}^{nc}\Sigma),$

where |t| = 0 (S¹-fibre) and $\mathcal{L}^{nc}\Sigma$ is the space of non-contractible loops on Σ .

Closed string invariants of McDuff domains

Corollary (Cieliebak–Lazarev–Massoni–M. '22) $V = \mathbb{R} \times S^* \Sigma$ *McDuff domain. Then*

 $SH^*(V) \cong tH^*(M)[t] \oplus H^*(M) \oplus H_{2-*}(\mathcal{L}^{nc}\Sigma),$

where |t| = 0 (S¹-fibre) and $\mathcal{L}^{nc}\Sigma$ is the space of non-contractible loops on Σ . As subrings:

- SH^{*}_{0−}(V) ≃ H^{*}(M)[t] and SH^{*}_−(V) ≃ tH^{*}(M)[t] with product as polynomial rings;
- SH^{*}₀₊(V) ≃ H^{≥0}_{2-*}(LΣ) the nonnegative action part of Rabinowitz loop homology with Cieliebak–Hingston–Oancea product;
- $SH^*_+(V) \cong H_{2-*}(\mathcal{L}^{nc}\Sigma)$ with the loop product.

Closed string invariants of \mathbb{T}^2 -bundle domains

Corollary (Cieliebak–Lazarev–Massoni–M. '22) $V = [-1,1] \times M \ a \mathbb{T}^2$ -bundle domain. Then $SH^*(V) \cong \bigoplus_{\Gamma} H^*(S^1) \oplus H^*(M) \oplus \bigoplus_{\Gamma} H^*(S^1),$ where $\Gamma = \mathbb{Q} \cap [0,1).$

Remark: Products are a bit more mysterious (they are very restricted, but contributing Floer solutions might or might not exist).

Open string products

We also have analogous fiber product descriptions for the open string products on wrapped Floer cohomology, i.e. on

$$\boldsymbol{A} = \bigoplus_{\boldsymbol{\Lambda},\boldsymbol{\Lambda}'} \boldsymbol{H} \boldsymbol{W}^*(\mathcal{L}_{\boldsymbol{\Lambda}},\mathcal{L}_{\boldsymbol{\Lambda}'}),$$

which extends to a fiber product description of the cohomology category $H^*\mathcal{W}_0$ as

$$\begin{array}{cccc} H^*\mathcal{W}_0 & \longrightarrow & H^*\mathcal{W}_0^- \\ & & & \downarrow \\ H^*\mathcal{W}_0^+ & \longrightarrow & H^*\mathcal{W}_0^c \end{array}$$

where each category above has the same objects but different morphism groups.

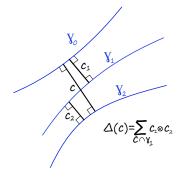
For the McDuff domains, consider the product \mathfrak{m} on

$$\boldsymbol{A} = \bigoplus_{\boldsymbol{\Lambda},\boldsymbol{\Lambda}'} \boldsymbol{H} \boldsymbol{W}^*(\mathcal{L}_{\boldsymbol{\Lambda}},\mathcal{L}_{\boldsymbol{\Lambda}'}),$$

The ideals $I_+, I_- \subset A$ are generated by

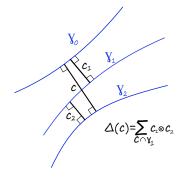
- Binormal geodesic chords between geodesics (plus side); and
- intersection points between geodesics with positive integer multiplicities (minus side).

The product \mathfrak{m}_+ on I_+ (geodesic side) is determined by a string cobracket operation $\Delta : I_+ \rightarrow I_+ \otimes I_+$.



The string cobracket Δ .

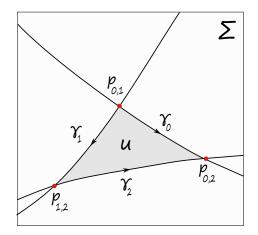
The product \mathfrak{m}_+ on I_+ (geodesic side) is determined by a string cobracket operation $\Delta : I_+ \rightarrow I_+ \otimes I_+$.



The string cobracket Δ .

The coefficients of \mathfrak{m}_+ are:

$$\langle \mathfrak{m}_+(\mathbf{c_1},\mathbf{c_2}),\mathbf{c_3} \rangle = \pm \langle \Delta(\mathbf{c_1}),\mathbf{c_3} \otimes \overline{\mathbf{c_2}} \rangle \pm \langle \Delta(\mathbf{c_2}),\overline{\mathbf{c_1}} \otimes \mathbf{c_3} \rangle.$$



The product \mathfrak{m}_{-} on I_{-} is given by counting immersed geodesic triangles. Multiplicities at the intersection points add up.

Some open questions

- If two smooth Anosov flows are topologically equivalent¹, are their orbit categories quasi-equivalent? And the reciprocal?
- (II) Anosov flows beyond algebraic cases are obtained e.g. by surgery. What is the effect of (Fried–Goodman) surgery on the symplectic invariants?
- (III) Are the Donnay–Pugh examples of embedded surfaces in \mathbb{R}^3 with Anosov geodesic flow, homotopic to Anosov geodesic flows of hyperbolic metrics?
- (IV) What are the symplectic invariants of the Franks–Williams example?

¹I.e. there exists a homeomorphism sending oriented orbits to oriented orbits.

Thank you!