Symplectic methods in space mission design

Prof. Agustin Moreno

IAS Princeton/Heidelberg based on j.w.w. Dayung Koh (JPL), Urs Frauenfelder (Augsburg), Cengiz Aydin (Neuchâtel).

• (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.

• (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.

• (But Why), i.e. Motivation: Placing satellites in orbit around a Planet–Moon system (a restricted three-body problem).

• (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.

• (But Why), i.e. Motivation: Placing satellites in orbit around a Planet–Moon system (a restricted three-body problem).

• (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.

• (But Why), i.e. Motivation: Placing satellites in orbit around a Planet–Moon system (a restricted three-body problem).

Aim of the talk: The How.

Motivating questions

• (Classification) Given two orbits, can we tell if they are *qualitatively different*, i.e. there is no *regular* family between them?

Motivating questions

- (Classification) Given two orbits, can we tell if they are *qualitatively different*, i.e. there is no *regular* family between them?
- (Catalogue) Can we refine existing data bases of periodic orbits?

Motivating questions

- (Classification) Given two orbits, can we tell if they are *qualitatively different*, i.e. there is no *regular* family between them?
- (Catalogue) Can we refine existing data bases of periodic orbits?
- (Symplectic geometry) Can we use modern mathematical methods from symplectic geometry to guide the numerical work?

(1) **The B-signs**: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.

- (1) **The B-signs**: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.
- (2) Global topological methods: the GIT-sequence, a topological refinement of Broucke's stability diagram, which encodes bifurcations and stability of orbits.

- (1) **The B-signs**: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.
- (2) **Global topological methods:** the *GIT-sequence*, a topological refinement of *Broucke's stability diagram*, which encodes bifurcations and stability of orbits.
- (3) Conley-Zehnder indices: a number associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.

- (1) **The B-signs**: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.
- (2) **Global topological methods:** the *GIT-sequence*, a topological refinement of *Broucke's stability diagram*, which encodes bifurcations and stability of orbits.
- (3) **Conley-Zehnder indices:** a number associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.
- (4) Floer numerical invariants: numerical counts of orbits that stay the same before and after a bifurcation, and so help predict existence of orbits.

Preliminaries

Mechanics: classical particles are point-like and massive, and move in *phase-space*.

Mechanics: classical particles are point-like and massive, and move in *phase-space*.

Phase-space: $(q, p) = (\text{position}, \text{momenta}) \in \mathbb{R}^n \oplus \mathbb{R}^n$. Phase-space is the collection $M = \{(q, p)\} \subset \mathbb{R}^{2n}$.

Mechanics: classical particles are point-like and massive, and move in *phase-space*.

Phase-space: $(q, p) = (\text{position}, \text{momenta}) \in \mathbb{R}^n \oplus \mathbb{R}^n$. Phase-space is the collection $M = \{(q, p)\} \subset \mathbb{R}^{2n}$.

Hamiltonian: a system is given by an energy function

 $H: M \rightarrow \mathbb{R}, H = H(q, p).$

Mechanics: classical particles are point-like and massive, and move in *phase-space*.

Phase-space: $(q, p) = (\text{position}, \text{momenta}) \in \mathbb{R}^n \oplus \mathbb{R}^n$. Phase-space is the collection $M = \{(q, p)\} \subset \mathbb{R}^{2n}$.

Hamiltonian: a system is given by an energy function

$$H: M \rightarrow \mathbb{R}, H = H(q, p).$$

A solution to the equations of motion is a curve $t \rightarrow x(t) = (q(t), p(t)) \in M$ which solves **Hamilton's equations**:

$$\dot{q} = rac{\partial H}{\partial p}$$

 $\dot{p} = -rac{\partial H}{\partial q}$

Restricted three-body problem

Setup. Three massive objects: Earth (E), Moon (M), Satellite (S), under gravitational interaction.

Classical assumptions:

- **(Restricted)** $m_S = 0$, i.e. *S* is *negligible*.
- (Circular) The primaries E and M move in circles around their center of mass.
- (**Planar**) S moves in the plane containing E and M, n = 2.

Spatial case: drop the planar assumption, | n = 3 |.

Restricted three-body problem

Setup. Three massive objects: Earth (E), Moon (M), Satellite (S), under gravitational interaction.

Classical assumptions:

- **(Restricted)** $m_S = 0$, i.e. *S* is *negligible*.
- (Circular) The *primaries E* and *M* move in circles around their center of mass.
- **(Planar)** S moves in the plane containing E and M, n = 2.

Spatial case: drop the planar assumption, n = 3.

Two parameters: μ (mass of Moon), and *c* (Jacobi constant = energy).

Different choices of μ models different systems in our Solar system (Jupiter–Europa, Saturn–Enceladus, etc).

Monodromy matrix

Notation: $Sp(2n) = \{$ symplectic matrices $\}$.

• The **monodromy matrix** of a periodic orbit *x* is $M_x = D\phi_T^H \in Sp(2n)$, where *T* is the period of *x*, and ϕ_t^H is the Hamiltonian flow.

Note: 1 appears twice as a **trivial** eigenvalue of M_x . Can ignore them if we consider the **reduced** monodromy matrix $M_x^{red} \in Sp(2n-2)$.

Monodromy matrix

Notation: $Sp(2n) = \{$ symplectic matrices $\}$.

• The **monodromy matrix** of a periodic orbit *x* is $M_x = D\phi_T^H \in Sp(2n)$, where *T* is the period of *x*, and ϕ_t^H is the Hamiltonian flow.

Note: 1 appears twice as a **trivial** eigenvalue of M_x . Can ignore them if we consider the **reduced** monodromy matrix $M_x^{red} \in Sp(2n-2)$.

- A **Floquet multiplier** of x is an eigenvalue of M_x , which is not one of the trivial eigenvalues (i.e. an eigenvalue of M_x^{red}).
- An orbit is **non-degenerate** if 1 does not appear among its Floquet multipliers.
- An orbit is **stable** if all its Floquet multipliers are semi-simple and lie in the unit circle.

Lemma

If $\mu \in \mathbb{C}$ is an eigenvalue of M_x , then so are $\overline{\mu}, 1/\mu, 1/\overline{\mu}$.

Elliptic (\mathcal{E}), positive/negative hyperbolic (\mathcal{H}^{\pm}), nonreal (\mathcal{N}).

Bifurcations

"Foundations of Mechanics", Abraham-Marsden. Period-doubling bifurcation or subtle division.

Bifurcations

Creation or birth/death.

Emission, or *k*-fold bifurcation (k = 4).

An **anti-symplectic involution** is a map $\rho : M \rightarrow M$ satisfying

•
$$\rho^2 = 1;$$

•
$$\rho^*\omega = -\omega$$
.

An **anti-symplectic involution** is a map $\rho : M \rightarrow M$ satisfying

•
$$\rho^2 = 1;$$

•
$$\rho^*\omega = -\omega$$
.

Its fixed-point locus is $fix(\rho) = \{x : \rho(x) = x\}.$

An **anti-symplectic involution** is a map $\rho : M \rightarrow M$ satisfying

•
$$\rho^2 = 1;$$

•
$$\rho^*\omega = -\omega$$
.

Its **fixed-point locus** is $fix(\rho) = \{x : \rho(x) = x\}$. An anti-symplectic involution ρ is a **symmetry** of the system if $H \circ \rho = H$.

An **anti-symplectic involution** is a map $\rho : M \rightarrow M$ satisfying

•
$$\rho^2 = 1;$$

•
$$\rho^*\omega = -\omega$$
.

Its **fixed-point locus** is $fix(\rho) = \{x : \rho(x) = x\}$. An anti-symplectic involution ρ is a **symmetry** of the system if $H \circ \rho = H$.

A periodic orbit x is symmetric if $\rho(x(-t)) = x(t)$ for all t.

Wonenburger matrices

The monodromy matrix of a symmetric orbit at a **symmetric point** has special form, a **Wonenburger** matrix:

$$M = M_{A,B,C} = \begin{pmatrix} A & B \\ C & A^T \end{pmatrix} \in Sp(2n),$$
(1)

where

$$B = B^T$$
, $C = C^T$, $AB = BA^T$, $A^T C = CA$, $A^2 - BC = 1$, (2)

Wonenburger matrices

The monodromy matrix of a symmetric orbit at a **symmetric point** has special form, a **Wonenburger** matrix:

$$M = M_{A,B,C} = \begin{pmatrix} A & B \\ C & A^T \end{pmatrix} \in Sp(2n),$$
(1)

where

$$B = B^T$$
, $C = C^T$, $AB = BA^T$, $A^T C = CA$, $A^2 - BC = 1$, (2)

The eigenvalues of *M* are determined by those of the first block *A*:

Lemma

λ e-val of M → its stability index a(λ) = ¹/₂(λ + 1/λ) e-val of A.
a e-val of A → λ(a) = a + √a² - 1 e-val of M.

Toolkit

Global topological methods

These methods encode:

- Bifurcations;
- stability;
- eigenvalue configurations;
- obstructions to existence of regular families;
- B-signs,

in a visual and resource-efficient way.

Broucke's stability diagram: 2D

Let [n=2], λ eigenvalue of $M^{red} \in Sp(2)$, with stability index $a(\lambda) = \frac{1}{2}(\lambda + 1/\lambda)$. Then:

- $\lambda = \pm 1$ iff $a(\lambda) = \pm 1$.
- λ positive hyperbolic iff $a(\lambda) > 1$;
- λ negative hyperbolic iff $a(\lambda) < -1$;
- λ elliptic (stable) iff $-1 < a(\lambda) < 1$.

Agustin Moreno

Broucke's stability diagrams: 3D Let $\boxed{n=3}$. Given $M^{red} = M_{A,B,C} \in Sp(4)$, its stability point is $p = (tr(A), det(A)) \in \mathbb{R}^2$.

Broucke's stability diagrams: 3D

Let n=3. Given $M^{red} = M_{A,B,C} \in Sp(4)$, its **stability point** is $p = (tr(A), det(A)) \in \mathbb{R}^2$. The plane splits into regions corresponding to the eigenvalue configuration of M^{red} :

Γ_{±1} = e-val ±1.

Γ_d = double e-val.

- \mathcal{E}^2 = doubly elliptic (stable region).
- etc.

Agustin Moreno

An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points.

An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points. The family bifurcates if p_t crosses Γ_1 .

An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points. The family bifurcates if p_t crosses Γ_1 .

More generally:

- Γ_{θ} = line with slope $\cos(2\pi\theta) \in [-1, 1]$ = matrices with e-val $e^{2\pi i\theta}$;
- Γ_{λ} = line with slope $a(\lambda) \in \mathbb{R} \setminus [-1, 1]$ = matrices with e-val λ .

A *k*-fold bifurcation happens when crossing $\Gamma_{I/k}$ for some *I*.

An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points. The family bifurcates if p_t crosses Γ_1 .

More generally:

- Γ_{θ} = line with slope $\cos(2\pi\theta) \in [-1, 1]$ = matrices with e-val $e^{2\pi i\theta}$;
- Γ_{λ} = line with slope $a(\lambda) \in \mathbb{R} \setminus [-1, 1]$ = matrices with e-val λ .

A *k*-fold bifurcation happens when crossing $\Gamma_{I/k}$ for some *I*.

If we know that two points lie in different components, then one should expect bifurcations in any path between them.

Agustin Moreno

JPL, May 11 2023

B-signs

Assume n = 2, 3. Let *x* be a symmetric orbit with monodromy

$$M_{A,B,C} = \left(egin{array}{cc} A & B \ C & A^T \end{array}
ight)$$

at a symmetric point. Assume *a* is a real, simple and nontrivial eigenvalue of *A* (i.e. $\lambda(a)$ elliptic or hyperbolic)). Let *v* satisfy $A^T v = a \cdot v$. The **B-sign** of $\lambda(a)$ is

$$\epsilon(\lambda(a)) = \operatorname{sign}(v^T B v) = \pm.$$

B-signs

Assume n = 2,3. Let x be a symmetric orbit with monodromy

$$M_{A,B,C} = \left(egin{array}{cc} A & B \ C & A^T \end{array}
ight)$$

at a symmetric point. Assume *a* is a real, simple and nontrivial eigenvalue of *A* (i.e. $\lambda(a)$ elliptic or hyperbolic)). Let *v* satisfy $A^T v = a \cdot v$. The **B-sign** of $\lambda(a)$ is

$$\epsilon(\lambda(\boldsymbol{a})) = \operatorname{sign}(\boldsymbol{v}^{\mathsf{T}}\boldsymbol{B}\boldsymbol{v}) = \pm.$$

Note: Independent of *v*.

- |n = 2| two *B*-signs ϵ_1, ϵ_2 , one for each symmetric point.
- n=3 two **pairs** of *B*-signs $(\epsilon_1^1, \epsilon_2^1), (\epsilon_1^2, \epsilon_2^2)$, one for each symmetric point and each eigenvalue.

Fact: A planar symmetric orbit is negative hyperbolic iff the *B*-signs of its two symmetric points differ (Frauenfelder–M. [FM], '23).

Agustin Moreno

JPL, May 11 2023

Global topological methods: GIT sequence, 2D

GIT sequence = refinement of Broucke diagram for symmetric orbits.

- B-signs "separate" hyperbolic branches, for symmetric orbits.
- If two points lie in the same component of the Broucke diagram, but if *B*-signs differ, one should *also* expect bifurcation in any path joining them.

Agustin Moreno

Global topological methods: GIT sequence, 3D

The branches are two-dimensional, and come together at the "branching locus", where we cross from one region to another.

Agustin Moreno

The CZ-index (introduced by Conley and Zehnder) is part of the **index theory** of the symplectic group. It assigns a (winding) number to non-degenerate orbits.

The CZ-index (introduced by Conley and Zehnder) is part of the **index theory** of the symplectic group. It assigns a (winding) number to non-degenerate orbits.

- Helps understand which families of orbits connect to which (CZ-index stays constant if no bifurcation occurs);
- Helps determine if orbits are elliptic/hyperbolic.

Conley–Zehnder index

n=2 x planar orbit with (reduced) monodromy M_x^{red} , x^k k-fold cover.

• Elliptic case: M_x^{red} conjugated to rotation,

$$M_{x}^{red} \sim \left(egin{array}{cc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight),$$

with Floquet multipliers $e^{\pm 2\pi i\theta}$. Then

$$\mu_{CZ}(x^k) = 1 + 2 \cdot \lfloor k \cdot \theta / 2\pi \rfloor$$

In particular, it is odd, and jumps by \pm 2 if the e-val 1 is crossed.

Conley–Zehnder index

n=2 x planar orbit with (reduced) monodromy M_x^{red} , x^k k-fold cover.

• Elliptic case: M_x^{red} conjugated to rotation,

$$M_{x}^{red} \sim \left(egin{array}{cc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight),$$

with Floquet multipliers $e^{\pm 2\pi i\theta}$. Then

$$\mu_{CZ}(x^k) = \mathbf{1} + \mathbf{2} \cdot \lfloor k \cdot \theta / 2\pi \rfloor$$

In particular, it is odd, and jumps by \pm 2 if the e-val 1 is crossed. • Hyperbolic case:

$$M_x^{red} \sim \left(egin{array}{cc} \lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{1}/\lambda \end{array}
ight),$$

with Floquet multipliers λ , 1/ λ . Then

$$\mu_{CZ}(\boldsymbol{x}^{\boldsymbol{k}}) = \boldsymbol{k} \cdot \boldsymbol{n},$$

where $DX_H(t)$ rotates eigenspaces by angle $\frac{\pi nt}{T}$, with *n* even/odd if *x* pos./neg. hyp.

Agustin Moreno

CZ-jumps

 μ_{CZ} jumps by ± 1 when crossing 1, according to direction of bifurcation. If it stays elliptic, the jump is by ± 2 .

Conley–Zehnder index

 $\lfloor n = 3 \rfloor$, planar orbits. Assume *H* admits the reflection along the (x, y)-plane as symmetry (e.g. 3BP). If $x \subset \mathbb{R}^2$ planar orbit,

$$M_{x}^{red} \sim \left(egin{array}{cc} M_{p}^{red} & 0 \ 0 & M_{s} \end{array}
ight) \in Sp(4).$$

Then

$$\mu_{CZ}(\mathbf{x}) = \mu_{CZ}^{p}(\mathbf{x}) + \mu_{CZ}^{s}(\mathbf{x}),$$

where each summand corresponds to M_p^{red} and M_s respectively.

- Planar to planar bifurcations correspond to jumps in μ_{CZ}^{p} .
- Planar to spatial bifurcations correspond to jumps of μ^s_{CZ}.

Floer numerical invariants

A periodic orbit x is good if µ_{CZ}(x^k) = µ_{CZ}(x)(mod 2) for all k ≥ 1.

Note: a planar orbit is bad iff it is an even cover of a negative hyperbolic orbit.

Floer numerical invariants

A periodic orbit x is good if µ_{CZ}(x^k) = µ_{CZ}(x)(mod 2) for all k ≥ 1.

Note: a planar orbit is bad iff it is an even cover of a negative hyperbolic orbit.

Given a bifurcation at x, the SFT-Euler characteristic (or the Floer number) of x is

$$\chi_{SFT}(\mathbf{X}) = \sum_{i} (-1)^{CZ_i^{bef}} = \sum_{j} (-1)^{CZ_j^{aft}}.$$

The sum on the LHS is over **good** orbits *before* bifurcation, and RHS is over **good** orbits *after* bifurcation.

Agustin Moreno

JPL, May 11 2023

Invariance

The fact that the sums agree before and after *–invariance–* follows from **Floer theory** in symplectic geometry.

In Memoriam Andreas Floer, 1956-1991.

The Floer number can be used as a **test**: if the sums do *not* agree, we know the algorithm missed an orbit.

Agustin Moreno

Example: symmetric period doubling bifurcation

The simple symmetric orbit *x* goes from elliptic to negative hyperbolic.

• A priori there could be two bifurcations for each symmetric point (B or C).

Example: symmetric period doubling bifurcation

The simple symmetric orbit *x* goes from elliptic to negative hyperbolic.

- A priori there could be two bifurcations for each symmetric point (B or C).
- Invariance of \(\chi_{SFT}(x^2)\) implies only one can happen (note \(x^2\) is bad).

Example: symmetric period doubling bifurcation

The simple symmetric orbit *x* goes from elliptic to negative hyperbolic.

- A priori there could be two bifurcations for each symmetric point (B or C).
- Invariance of \(\chi_{SFT}(x^2)\) implies only one can happen (note \(x^2\) is bad).
- Bifurcation happens at the symmetric point in which the *B*-sign does *not* jump.

Summary of toolkit

- (1) **The B-signs**: a number associated to each elliptic or hyperbolic Floquet multiplier of an orbit, which helps predict bifurcations.
- (2) **Global topological methods:** the *GIT-sequence*, a topological refinement of *Broucke's stability diagram*, which encodes bifurcations and stability of orbits.
- (3) **Conley-Zehnder indices:** a number associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.
- (4) Floer numerical invariants: numerical counts of orbits that stay the same before and after a bifurcation, and so help predict existence of orbits.

Numerical work

Missions

- To find conditions suitable for life, missions proposed by **NASA**:
 - Jupiter-Europa system (Europa Clipper); and
 - Saturn-Enceladus system.

This motivates studies of orbits for these systems.

The power of deformations

Two options:

- Fix μ and change *c*; or
- Fix *c* and change μ .

The power of deformations

Two options:

- Fix μ and change *c*; or
- Fix *c* and change μ .

I.e. to study a system, sometimes it is worthy to study another nearby system:

Hill's lunar problem vo Saturn–Enceladus vo Jupiter–Europa vo Earth–Moon.

Example: Pitchfork bifurcation

Lunar problem has more symmetry: a (non-generic) pitchfork bifurcation in lunar problem (Hénon) deforms to a generic situation in Jupiter–Europa. Birth-death branch might be hard to predict otherwise.

Hill's lunar problem

Bifurcation diagram involving covers of f, g, g' (Cengiz Aydin, PhD thesis '23). Each family has constant CZ-index. Floer invariants are easy to compute.

Numerical work

Period-doubling bifurcation in the Jupiter-Europa system $(\mu = 2.5266448850435 E^{-05})$, found via the *cell-mapping method* of Koh–Anderson–Bermejo-Moreno [KAB].

GIT plots

GIT plot of the period-doubling bifurcation of the snitch configuration (Frauenfelder–Koh–M. [FKM]).

References I

Cengiz Aydin.

A study of the Hill three-body problem by modern symplectic geometry. PhD Thesis, Université de Nauchâtel, 2023.

Urs Frauenfelder, Dayung Koh, Agustin Moreno. Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627.

Urs Frauenfelder, Agustin Moreno.
 On GIT quotients of the symplectic group, stability and bifurcations of symmetric orbits.
 To appear in the Journal of Symplectic Geometry.

References II

Urs Frauenfelder, Agustin Moreno.
 On doubly symmetric periodic orbits.
 Celestial Mech. Dynam. Astronom. 135 (2023), no. 2, Paper No. 20..

 Dayung Koh, Rodney L. Anderson, Ivan Bermejo-Moreno.
 Cell-mapping orbit search for mission design at ocean worlds using parallel computing.
 The Journal of the Astronautical Sciences, Volume 68, Issue 1, p.172-196.