Symplectic methods in space mission design

Prof. Agustin Moreno
IAS Princeton/Heidelberg

based on j.w.w. Dayung Koh (JPL), Urs Frauenfelder (Augsburg), Cengiz Aydin (Neuchâtel).

What, Why, Where, How.

- (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.

What, Why, Where, How.

- (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.
- (But Why), i.e. Motivation: Placing satellites in orbit around a Planet-Moon system (a restricted three-body problem).

What, Why, Where, How.

- (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.
- (But Why), i.e. Motivation: Placing satellites in orbit around a Planet-Moon system (a restricted three-body problem).
- (And Where), i.e. Problem: Orbits in families undergo bifurcation \leadsto new families. Need methods to keep track of this data.

What, Why, Where, How.

- (The What), i.e. Goal: Study periodic trajectories of Hamiltonian systems, in families.
- (But Why), i.e. Motivation: Placing satellites in orbit around a Planet-Moon system (a restricted three-body problem).
- (And Where), i.e. Problem: Orbits in families undergo bifurcation $\leadsto \rightarrow$ new families. Need methods to keep track of this data.

Aim of the talk: The How.

Motivating questions

- (Classification) Given two orbits, can we tell if they are qualitatively different, i.e. there is no regular family between them?

Motivating questions

- (Classification) Given two orbits, can we tell if they are qualitatively different, i.e. there is no regular family between them?
- (Catalogue) Can we refine existing data bases of periodic orbits?

Motivating questions

- (Classification) Given two orbits, can we tell if they are qualitatively different, i.e. there is no regular family between them?
- (Catalogue) Can we refine existing data bases of periodic orbits?
- (Symplectic geometry) Can we use modern mathematical methods from symplectic geometry to guide the numerical work?

Goal of the talk: introduce our toolkit

(1) The B-signs: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.

Goal of the talk: introduce our toolkit

(1) The B-signs: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.
(2) Global topological methods: the GIT-sequence, a topological refinement of Broucke's stability diagram, which encodes bifurcations and stability of orbits.

Goal of the talk: introduce our toolkit

(1) The B-signs: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.
(2) Global topological methods: the GIT-sequence, a topological refinement of Broucke's stability diagram, which encodes bifurcations and stability of orbits.
(3) Conley-Zehnder indices: a number associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.

Goal of the talk: introduce our toolkit

(1) The B-signs: numbers associated to elliptic/hyperbolic orbits, which help predict bifurcations.
(2) Global topological methods: the GIT-sequence, a topological refinement of Broucke's stability diagram, which encodes bifurcations and stability of orbits.
(3) Conley-Zehnder indices: a number associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.
(4) Floer numerical invariants: numerical counts of orbits that stay the same before and after a bifurcation, and so help predict existence of orbits.

Preliminaries

Symplectic geometry and Hamiltonian dynamics

Mechanics: classical particles are point-like and massive, and move in phase-space.

Symplectic geometry and Hamiltonian dynamics

Mechanics: classical particles are point-like and massive, and move in phase-space.

Phase-space: $(q, p)=\left(\right.$ position, momenta) $\in \mathbb{R}^{n} \oplus \mathbb{R}^{n}$. Phasespace is the collection $M=\{(q, p)\} \subset \mathbb{R}^{2 n}$.

Symplectic geometry and Hamiltonian dynamics

Mechanics: classical particles are point-like and massive, and move in phase-space.

Phase-space: $(q, p)=\left(\right.$ position, momenta) $\in \mathbb{R}^{n} \oplus \mathbb{R}^{n}$. Phasespace is the collection $M=\{(q, p)\} \subset \mathbb{R}^{2 n}$.

Hamiltonian: a system is given by an energy function

$$
H: M \rightarrow \mathbb{R}, H=H(q, p) .
$$

Symplectic geometry and Hamiltonian dynamics

Mechanics: classical particles are point-like and massive, and move in phase-space.

Phase-space: $(q, p)=\left(\right.$ position, momenta) $\in \mathbb{R}^{n} \oplus \mathbb{R}^{n}$. Phasespace is the collection $M=\{(q, p)\} \subset \mathbb{R}^{2 n}$.

Hamiltonian: a system is given by an energy function

$$
H: M \rightarrow \mathbb{R}, H=H(q, p) .
$$

A solution to the equations of motion is a curve $t \rightarrow x(t)=(q(t), p(t)) \in$ M which solves Hamilton's equations:

$$
\left\{\begin{array}{c}
\dot{q}=\frac{\partial H}{\partial p} \\
\dot{p}=-\frac{\partial H}{\partial q}
\end{array}\right.
$$

Restricted three-body problem

Setup. Three massive objects: Earth (E), Moon (M), Satellite (S), under gravitational interaction.

Classical assumptions:
(1) (Restricted) $m_{S}=0$, i.e. S is negligible.
(2) (Circular) The primaries E and M move in circles around their center of mass.
(3) (Planar) S moves in the plane containing E and $M, n=2$.

Spatial case: drop the planar assumption, $n=3$.

Restricted three-body problem

Setup. Three massive objects: Earth (E), Moon (M), Satellite (S), under gravitational interaction.
Classical assumptions:
(1) (Restricted) $m_{S}=0$, i.e. S is negligible.
(2) (Circular) The primaries E and M move in circles around their center of mass.
(3) (Planar) S moves in the plane containing E and $M, n=2$.

Spatial case: drop the planar assumption, $n=3$.

Two parameters: μ (mass of Moon), and c (Jacobi constant $=$ energy).

Different choices of μ models different systems in our Solar system (Jupiter-Europa, Saturn-Enceladus, etc).

Monodromy matrix

Notation: $\operatorname{Sp}(2 n)=\{$ symplectic matrices $\}$.

- The monodromy matrix of a periodic orbit x is $M_{x}=D \phi_{T}^{H} \in \operatorname{Sp}(2 n)$, where T is the period of x, and ϕ_{t}^{H} is the Hamiltonian flow.
Note: 1 appears twice as a trivial eigenvalue of M_{x}. Can ignore them if we consider the reduced monodromy matrix $M_{x}^{\text {red }} \in S p(2 n-2)$.

Monodromy matrix

Notation: $\operatorname{Sp}(2 n)=\{$ symplectic matrices $\}$.

- The monodromy matrix of a periodic orbit x is $M_{x}=D \phi_{T}^{H} \in \operatorname{Sp}(2 n)$, where T is the period of x, and ϕ_{t}^{H} is the Hamiltonian flow.
Note: 1 appears twice as a trivial eigenvalue of M_{x}. Can ignore them if we consider the reduced monodromy matrix $M_{x}^{r e d} \in S p(2 n-2)$.
- A Floquet multiplier of x is an eigenvalue of M_{x}, which is not one of the trivial eigenvalues (i.e. an eigenvalue of $M_{x}^{\text {red }}$).
- An orbit is non-degenerate if 1 does not appear among its Floquet multipliers.
- An orbit is stable if all its Floquet multipliers are semi-simple and lie in the unit circle.

Lemma

If $\mu \in \mathbb{C}$ is an eigenvalue of M_{x}, then so are $\bar{\mu}, 1 / \mu, 1 / \bar{\mu}$.

Elliptic (\mathcal{E}), positive/negative hyperbolic $\left(\mathcal{H}^{ \pm}\right)$, nonreal (\mathcal{N}).

Bifurcations

"Foundations of Mechanics", Abraham-Marsden.
Period-doubling bifurcation or subtle division.

Bifurcations

Creation or birth/death.

Emission, or k-fold bifurcation ($k=4$).

Symmetries

An anti-symplectic involution is a map $\rho: M \rightarrow M$ satisfying

- $\rho^{2}=\mathbb{1}$;
- $\rho^{*} \omega=-\omega$.

Symmetries

An anti-symplectic involution is a map $\rho: M \rightarrow M$ satisfying

- $\rho^{2}=\mathbb{1}$;
- $\rho^{*} \omega=-\omega$.

Its fixed-point locus is $\operatorname{fix}(\rho)=\{x: \rho(x)=x\}$.

Symmetries

An anti-symplectic involution is a map $\rho: M \rightarrow M$ satisfying

- $\rho^{2}=\mathbb{1}$;
- $\rho^{*} \omega=-\omega$.

Its fixed-point locus is $\operatorname{fix}(\rho)=\{x: \rho(x)=x\}$. An anti-symplectic involution ρ is a symmetry of the system if $H \circ \rho=H$.

Symmetries

An anti-symplectic involution is a map $\rho: M \rightarrow M$ satisfying

- $\rho^{2}=\mathbb{1}$;
- $\rho^{*} \omega=-\omega$.

Its fixed-point locus is $\operatorname{fix}(\rho)=\{x: \rho(x)=x\}$. An anti-symplectic involution ρ is a symmetry of the system if $H \circ \rho=H$.
A periodic orbit x is symmetric if $\rho(x(-t))=x(t)$ for all t.

Wonenburger matrices

The monodromy matrix of a symmetric orbit at a symmetric point has special form, a Wonenburger matrix:

$$
M=M_{A, B, C}=\left(\begin{array}{cc}
A & B \tag{1}\\
C & A^{T}
\end{array}\right) \in \operatorname{Sp}(2 n)
$$

where

$$
\begin{equation*}
B=B^{T}, \quad C=C^{T}, \quad A B=B A^{T}, \quad A^{T} C=C A, \quad A^{2}-B C=\mathbb{1} \tag{2}
\end{equation*}
$$

Wonenburger matrices

The monodromy matrix of a symmetric orbit at a symmetric point has special form, a Wonenburger matrix:

$$
M=M_{A, B, C}=\left(\begin{array}{cc}
A & B \tag{1}\\
C & A^{T}
\end{array}\right) \in \operatorname{Sp}(2 n)
$$

where

$$
\begin{equation*}
B=B^{T}, \quad C=C^{T}, \quad A B=B A^{T}, \quad A^{T} C=C A, \quad A^{2}-B C=\mathbb{1} \tag{2}
\end{equation*}
$$

The eigenvalues of M are determined by those of the first block A :
Lemma

- λ e-val of $M \leadsto$ its stability index $a(\lambda)=\frac{1}{2}(\lambda+1 / \lambda) e$-val of A.
- a e-val of $A \leadsto \lambda(a)=a+\sqrt{a^{2}-1} e$-val of M.

Toolkit

Global topological methods

These methods encode:

- Bifurcations;
- stability;
- eigenvalue configurations;
- obstructions to existence of regular families;
- B-signs,
in a visual and resource-efficient way.

Broucke's stability diagram: 2D

Let $n=2$, λ eigenvalue of $M^{\text {red }} \in S p(2)$, with stability index $a(\lambda)=$ $\frac{1}{2}(\lambda+1 / \lambda)$. Then:

- $\lambda= \pm 1$ iff $a(\lambda)= \pm 1$.
- λ positive hyperbolic iff $a(\lambda)>1$;
- λ negative hyperbolic iff $a(\lambda)<-1$;
- λ elliptic (stable) iff $-1<a(\lambda)<1$.

Broucke's stability diagrams: 3D

Let $n=3$. Given $M^{\text {red }}=M_{A, B, C} \in \operatorname{Sp}(4)$, its stability point is $p=$ $(\operatorname{tr}(A), \operatorname{det}(A)) \in \mathbb{R}^{2}$.

Broucke's stability diagrams: 3D

Let $n=3$. Given $M^{\text {red }}=M_{A, B, C} \in S p(4)$, its stability point is $p=$ $(\operatorname{tr}(A), \operatorname{det}(A)) \in \mathbb{R}^{2}$. The plane splits into regions corresponding to the eigenvalue configuration of $M^{\text {red }}$:

- $\Gamma_{ \pm 1}=\mathrm{e}-\mathrm{val} \pm 1$.
- $\Gamma_{d}=$ double e-val.
- $\mathcal{E}^{2}=$ doubly elliptic (stable region).
- etc.

Bifurcations in the Broucke diagram

An orbit family $t \mapsto x_{t}$ induces a path $t \mapsto p_{t} \in \mathbb{R}^{2}$ of stability points.

Bifurcations in the Broucke diagram

An orbit family $t \mapsto x_{t}$ induces a path $t \mapsto p_{t} \in \mathbb{R}^{2}$ of stability points. The family bifurcates if p_{t} crosses Γ_{1}.

Bifurcations in the Broucke diagram

An orbit family $t \mapsto x_{t}$ induces a path $t \mapsto p_{t} \in \mathbb{R}^{2}$ of stability points. The family bifurcates if p_{t} crosses Γ_{1}.

More generally:

- $\Gamma_{\theta}=$ line with slope $\cos (2 \pi \theta) \in[-1,1]=$ matrices with e-val $e^{2 \pi i \theta}$;
- $\Gamma_{\lambda}=$ line with slope $a(\lambda) \in \mathbb{R} \backslash[-1,1]=$ matrices with e-val λ.

A k-fold bifurcation happens when crossing $\Gamma_{I / k}$ for some I.

Bifurcations in the Broucke diagram

An orbit family $t \mapsto x_{t}$ induces a path $t \mapsto p_{t} \in \mathbb{R}^{2}$ of stability points. The family bifurcates if p_{t} crosses Γ_{1}.

More generally:

- $\Gamma_{\theta}=$ line with slope $\cos (2 \pi \theta) \in[-1,1]=$ matrices with e-val $e^{2 \pi i \theta}$;
- $\Gamma_{\lambda}=$ line with slope $a(\lambda) \in \mathbb{R} \backslash[-1,1]=$ matrices with e-val λ.

A k-fold bifurcation happens when crossing $\Gamma_{I / k}$ for some I.
If we know that two points lie in different components, then one should expect bifurcations in any path between them.

B-signs

Assume $n=2,3$. Let x be a symmetric orbit with monodromy

$$
M_{A, B, C}=\left(\begin{array}{cc}
A & B \\
C & A^{T}
\end{array}\right)
$$

at a symmetric point. Assume a is a real, simple and nontrivial eigenvalue of A (i.e. $\lambda(a)$ elliptic or hyperbolic)). Let v satisfy $A^{T} v=a \cdot v$. The B-sign of $\lambda(\boldsymbol{a})$ is

$$
\epsilon(\lambda(a))=\operatorname{sign}\left(v^{\top} B v\right)= \pm
$$

B-signs

Assume $n=2,3$. Let x be a symmetric orbit with monodromy

$$
M_{A, B, C}=\left(\begin{array}{cc}
A & B \\
C & A^{T}
\end{array}\right)
$$

at a symmetric point. Assume a is a real, simple and nontrivial eigenvalue of A (i.e. $\lambda(a)$ elliptic or hyperbolic)). Let v satisfy $A^{T} v=a \cdot v$. The \mathbf{B}-sign of $\lambda(\boldsymbol{a})$ is

$$
\epsilon(\lambda(a))=\operatorname{sign}\left(v^{\top} B v\right)= \pm .
$$

Note: Independent of v.

- $n=2$ two B-signs $\epsilon_{1}, \epsilon_{2}$, one for each symmetric point.
- $n=3$ two pairs of B-signs $\left(\epsilon_{1}^{1}, \epsilon_{2}^{1}\right),\left(\epsilon_{1}^{2}, \epsilon_{2}^{2}\right)$, one for each symmetric point and each eigenvalue.

Fact: A planar symmetric orbit is negative hyperbolic iff the B-signs of its two symmetric points differ (Frauenfelder-M. [FM], '23).

Global topological methods: GIT sequence, 2D

GIT sequence = refinement of Broucke diagram for symmetric orbits.

- B-signs "separate" hyperbolic branches, for symmetric orbits.
- If two points lie in the same component of the Broucke diagram, but if B-signs differ, one should also expect bifurcation in any path joining them.

Global topological methods: GIT sequence, 3D

The branches are two-dimensional, and come together at the "branching locus", where we cross from one region to another.

Conley-Zehnder index

The CZ-index (introduced by Conley and Zehnder) is part of the index theory of the symplectic group. It assigns a (winding) number to nondegenerate orbits.

Conley-Zehnder index

The CZ-index (introduced by Conley and Zehnder) is part of the index theory of the symplectic group. It assigns a (winding) number to nondegenerate orbits.

- Helps understand which families of orbits connect to which (CZ-index stays constant if no bifurcation occurs);
- Helps determine if orbits are elliptic/hyperbolic.

Conley-Zehnder index

$\mathrm{n}=2 \times$ planar orbit with (reduced) monodromy $M_{x}^{\text {red }}, x^{k} k$-fold cover.

- Elliptic case: $M_{x}^{\text {red }}$ conjugated to rotation,

$$
M_{x}^{\text {red }} \sim\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

with Floquet multipliers $e^{ \pm 2 \pi i \theta}$. Then

$$
\mu_{C Z}\left(x^{k}\right)=1+2 \cdot\lfloor k \cdot \theta / 2 \pi\rfloor
$$

In particular, it is odd, and jumps by ± 2 if the e-val 1 is crossed.

Conley-Zehnder index

$\mathrm{n}=2 \times$ planar orbit with (reduced) monodromy $M_{x}^{\text {red }}, x^{k} k$-fold cover.

- Elliptic case: $M_{x}^{\text {red }}$ conjugated to rotation,

$$
M_{x}^{\text {red }} \sim\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

with Floquet multipliers $e^{ \pm 2 \pi i \theta}$. Then

$$
\mu_{C Z}\left(x^{k}\right)=1+2 \cdot\lfloor k \cdot \theta / 2 \pi\rfloor
$$

In particular, it is odd, and jumps by ± 2 if the e-val 1 is crossed.

- Hyperbolic case:

$$
M_{x}^{\text {red }} \sim\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1 / \lambda
\end{array}\right)
$$

with Floquet multipliers $\lambda, 1 / \lambda$. Then

$$
\mu_{C Z}\left(x^{k}\right)=k \cdot n,
$$

where $D X_{H}(t)$ rotates eigenspaces by angle $\frac{\pi n t}{T}$, with n even/odd if x pos./neg. hyp.

CZ-jumps

$\mu_{C Z}$ jumps by ± 1 when crossing 1 , according to direction of bifurcation. If it stays elliptic, the jump is by ± 2.

Conley-Zehnder index

$n=3$, planar orbits. Assume H admits the reflection along the (x, y) plane as symmetry (e.g. 3BP). If $x \subset \mathbb{R}^{2}$ planar orbit,

$$
M_{x}^{\text {red }} \sim\left(\begin{array}{cc}
M_{p}^{\text {red }} & 0 \\
0 & M_{s}
\end{array}\right) \in \operatorname{Sp}(4)
$$

Then

$$
\mu_{C Z}(x)=\mu_{C Z}^{p}(x)+\mu_{C Z}^{s}(x)
$$

where each summand corresponds to $M_{p}^{\text {red }}$ and M_{s} respectively.

- Planar to planar bifurcations correspond to jumps in $\mu_{C z}^{p}$.
- Planar to spatial bifurcations correspond to jumps of $\mu_{C Z}^{s}$.

Floer numerical invariants

- A periodic orbit x is good if $\mu_{C Z}\left(x^{k}\right)=\mu_{C Z}(x)(\bmod 2)$ for all $k \geqslant 1$.
Note: a planar orbit is bad iff it is an even cover of a negative hyperbolic orbit.

Floer numerical invariants

- A periodic orbit x is good if $\mu_{C Z}\left(x^{k}\right)=\mu_{C Z}(x)(\bmod 2)$ for all $k \geqslant 1$.
Note: a planar orbit is bad iff it is an even cover of a negative hyperbolic orbit.

Given a bifurcation at x, the SFT-Euler characteristic (or the Floer number) of x is

$$
\chi_{S F T}(x)=\sum_{i}(-1)^{C Z_{i}^{\text {bet }}}=\sum_{j}(-1)^{C Z_{j}^{a t t}} .
$$

The sum on the LHS is over good orbits before bifurcation, and RHS is over good orbits after bifurcation.

Invariance

The fact that the sums agree before and after -invariance- follows from Floer theory in symplectic geometry.

In Memoriam Andreas Floer, 1956-1991.

The Floer number can be used as a test: if the sums do not agree, we know the algorithm missed an orbit.

Example: symmetric period doubling bifurcation

The simple symmetric orbit x goes from elliptic to negative hyperbolic.

- A priori there could be two bifurcations for each symmetric point (B or C).

Example: symmetric period doubling bifurcation

The simple symmetric orbit x goes from elliptic to negative hyperbolic.

- A priori there could be two bifurcations for each symmetric point (B or C).
- Invariance of $\chi_{S F T}\left(x^{2}\right)$ implies only one can happen (note x^{2} is bad).

Example: symmetric period doubling bifurcation

The simple symmetric orbit x goes from elliptic to negative hyperbolic.

- A priori there could be two bifurcations for each symmetric point (B or C).
- Invariance of $\chi_{S F T}\left(x^{2}\right)$ implies only one can happen (note x^{2} is bad).
- Bifurcation happens at the symmetric point in which the B-sign does not jump.

Summary of toolkit

(1) The B-signs: a number associated to each elliptic or hyperbolic Floquet multiplier of an orbit, which helps predict bifurcations.
(2) Global topological methods: the GIT-sequence, a topological refinement of Broucke's stability diagram, which encodes bifurcations and stability of orbits.
(3) Conley-Zehnder indices: a number associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.
(4) Floer numerical invariants: numerical counts of orbits that stay the same before and after a bifurcation, and so help predict existence of orbits.

Numerical work

Missions

To find conditions suitable for life, missions proposed by NASA:

- Jupiter-Europa system (Europa Clipper); and
- Saturn-Enceladus system.

This motivates studies of orbits for these systems.

The power of deformations

Two options:

- Fix μ and change c; or
- Fix c and change μ.

The power of deformations

Two options:

- Fix μ and change c; or
- Fix c and change μ.
I.e. to study a system, sometimes it is worthy to study another nearby system:

Hill's lunar problem \leadsto Saturn-Enceladus $\leadsto \leadsto$ Jupiter-Europa $\leadsto \leadsto$ Earth-Moon.

Example: Pitchfork bifurcation

Lunar problem has more symmetry: a (non-generic) pitchfork bifurcation in lunar problem (Hénon) deforms to a generic situation in Jupiter-Europa. Birth-death branch might be hard to predict otherwise.

Hill's lunar problem

Bifurcation diagram involving covers of f, g, g^{\prime} (Cengiz Aydin, PhD thesis '23). Each family has constant CZ-index. Floer invariants are easy to compute.

Numerical work

Period-doubling bifurcation in the Jupiter-Europa system ($\mu=2.5266448850435 E^{-05}$), found via the cell-mapping method of Koh-Anderson-Bermejo-Moreno [KAB].

GIT plots

GIT plot of the period-doubling bifurcation of the snitch configuration (Frauenfelder-Koh-M. [FKM]).

References I

目 Cengiz Aydin.
A study of the Hill three-body problem by modern symplectic geometry.
PhD Thesis, Université de Nauchâtel, 2023.

- Urs Frauenfelder, Dayung Koh, Agustin Moreno.

Symplectic methods in the numerical search of orbits in real-life planetary systems.
Preprint arXiv:2206.00627.
國 Urs Frauenfelder, Agustin Moreno.
On GIT quotients of the symplectic group, stability and bifurcations of symmetric orbits.
To appear in the Journal of Symplectic Geometry.

References II

Urs Frauenfelder, Agustin Moreno.
On doubly symmetric periodic orbits.
Celestial Mech. Dynam. Astronom. 135 (2023), no. 2, Paper No. 20..
(iv Dayung Koh, Rodney L. Anderson, Ivan Bermejo-Moreno. Cell-mapping orbit search for mission design at ocean worlds using parallel computing.
The Journal of the Astronautical Sciences, Volume 68, Issue 1, p.172-196.

