On the spatial restricted three-body problem

Agustin Moreno

Uppsala Universitet

Joint with Otto van Koert: arXiv:2011.10386, arXiv:2011.06562. Spin-off (holomorphic dynamics): arXiv:2011.06568. Survey available: arXiv:2101.04438.

Spatial circular restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses m_{E}, m_{M}, m_{S}, under gravitational interaction.
Classical assumptions:
(1) (Restricted) $m_{S}=0$, i.e. S is negligible.
(2) (Circular) The primaries E and M move in circles around their center of mass.
((Planar) S moves in the plane spanned by E and M.
Spatial case: drop the planar assumption.
Goal: Study motion of S.

Spatial circular restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses m_{E}, m_{M}, m_{S}, under gravitational interaction.
Classical assumptions:
(1) (Restricted) $m_{S}=0$, i.e. S is negligible.
(2) (Circular) The primaries E and M move in circles around their center of mass.
((Planar) S moves in the plane spanned by E and M.
Spatial case: drop the planar assumption.
Goal: Study motion of S.

Spatial circular restricted three-body problem

Spatial circular restricted three-body problem

In rotating coordinates so that E, M are fixed, the Hamiltonian is autonomous and so a conserved quantity:

$$
\begin{gathered}
H: \mathbb{R}^{3} \backslash\{E, M\} \times \mathbb{R}^{3} \rightarrow \mathbb{R} \\
H(q, p)=\frac{1}{2}\|p\|^{2}-\frac{\mu}{\|q-M\|}-\frac{1-\mu}{\|q-E\|}+p_{1} q_{2}-p_{2} q_{1}
\end{gathered}
$$

where we normalize so that $m_{E}+m_{M}=1$, and $\mu=m_{M}$.
Planar problem: $p_{3}=q_{3}=0$ (flow-invariant subset).
Two parameters: μ, and $H=c$ Jacobi constant.

Integrable limit cases

If $\mu=0 \rightsquigarrow H=K+L$, where

$$
K(q, p)=\frac{1}{2}\|p\|^{2}-\frac{1}{\|q\|}
$$

is the Kepler energy (two-body problem), and

$$
L=p_{1} q_{2}-p_{2} q_{1}
$$

is the Coriolis/centrifugal term. This is the rotating Kepler problem.

Fact: $c \rightarrow-\infty \rightsquigarrow$ Kepler problem.

Hill regions

H has five critical points: L_{1}, \ldots, L_{5} called Lagrangians.

Figure: The critical values of H.

Hill regions

For $c \in \mathbb{R}$, let $\Sigma_{c}=H^{-1}(c)$. Consider

$$
\begin{aligned}
\pi: \mathbb{R}^{3} \backslash\{E, M\} \times \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \backslash\{E, M\} \\
(q, p) & \mapsto q
\end{aligned}
$$

and the Hill region

$$
\mathcal{K}_{c}=\pi\left(\Sigma_{c}\right)
$$

Spatial circular restricted three-body problem Spatial version of Poincaré's program: Step 1 Spatial version of Poincare's program: Step 2 Holomorphic dynamics

Low energy Hill regions

Figure: Morse theory in the three-body problem.

Spatial circular restricted three-body problem Spatial version of Poincaré's program: Step 1 Spatial version of Poincare's program: Step 2

Holomorphic dynamics
Low energy Hill regions

$$
c \in\left(H\left(L_{1}\right), H\left(L_{1}\right)+\varepsilon\right)
$$

Figure: Morse theory in the three-body problem.

Moser regularization

H is singular at collisions ($q=E$ or $q=M \rightsquigarrow p=\infty$), but can be regularized via Moser's recipe:

$$
(q, p) \stackrel{\text { switch }}{\longmapsto}(-p, q) \stackrel{\text { stereo. proj. }}{\longmapsto}(\xi, \eta) \in T^{*} S^{3}
$$

We get compactifications for spatial energy levels:

Similarly, the planar problem level sets get compactified to $\bar{\Sigma}_{P . C}^{E} \cong S^{*} S^{2}$

Moser regularization

H is singular at collisions ($q=E$ or $q=M \rightsquigarrow p=\infty$), but can be regularized via Moser's recipe:

$$
(q, p) \stackrel{\text { switch }}{\longmapsto}(-p, q) \stackrel{\text { stereo. proj. }}{\longmapsto}(\xi, \eta) \in T^{*} S^{3}
$$

We get compactifications for spatial energy levels:

$$
\begin{gathered}
\Sigma_{c}^{E} \rightsquigarrow \bar{\Sigma}_{c}^{E} \cong S^{*} S^{3} . \\
\Sigma_{c}^{M} \rightsquigarrow \bar{\Sigma}_{c}^{M} \cong S^{*} S^{3} . \\
\Sigma_{c}^{E, M} \rightsquigarrow \bar{\Sigma}_{c}^{E, M} \cong S^{*} S^{3} \# S^{*} S^{3} .
\end{gathered}
$$

Similarly, the planar problem level sets get compactified to

Moser regularization

H is singular at collisions ($q=E$ or $q=M \rightsquigarrow p=\infty$), but can be regularized via Moser's recipe:

$$
(q, p) \stackrel{\text { switch }}{\longmapsto}(-p, q) \stackrel{\text { stereo. proj. }}{\longmapsto}(\xi, \eta) \in T^{*} S^{3}
$$

We get compactifications for spatial energy levels:

$$
\begin{gathered}
\Sigma_{c}^{E} \rightsquigarrow \bar{\Sigma}_{c}^{E} \cong S^{*} S^{3} . \\
\Sigma_{c}^{M} \rightsquigarrow \bar{\Sigma}_{c}^{M} \cong S^{*} S^{3} . \\
\Sigma_{c}^{E, M} \rightsquigarrow \bar{\Sigma}_{c}^{E, M} \cong S^{*} S^{3} \# S^{*} S^{3} .
\end{gathered}
$$

Similarly, the planar problem level sets get compactified to $\bar{\Sigma}_{P, c}^{E} \cong S^{*} S^{2}=\mathbb{R} P^{3}, \bar{\Sigma}_{P, c}^{M} \cong S^{*} S^{2}=\mathbb{R} P^{3}, \bar{\Sigma}_{P, c}^{E, M} \cong \mathbb{R} P^{3} \# \mathbb{R} P^{3}$.

Spatial circular restricted three-body problem Spatial version of Poincaré's program: Step 1 Spatial version of Poincare's program: Step 2 Holomorphic dynamics

Moser regularization

Figure: The Moser-regularized level set near E.

Contact geometry of the three-body problem

Theorem (planar case: Albers-Frauenfelder-van
 Koert-Paternain '12, spatial case: Cho-Jung-Kim '19)

For $\mu \in(0,1), c<H\left(L_{1}\right), \bar{\Sigma}_{c}^{E}$ and $\bar{\Sigma}_{c}^{M}$ are contact-type, and so is $\bar{\Sigma}_{c}^{E, M}$ for $c \in\left(H\left(L_{1}\right), H\left(L_{1}\right)+\epsilon\right)$ for some $\epsilon>0$. As contact manifolds:

$$
\begin{gathered}
\bar{\Sigma}_{c}^{E} \cong \bar{\Sigma}_{c}^{M} \cong\left(S^{*} S^{3}, \xi_{s t d}\right) \\
\bar{\Sigma}_{c}^{E, M} \cong\left(S^{*} S^{3}, \xi_{s t d}\right) \#\left(S^{*} S^{3}, \xi_{s t d}\right)
\end{gathered}
$$

The planar problem is a flow-invariant codim-2 contact submanifold:

$$
\begin{gathered}
\bar{\Sigma}_{P, c}^{E} \cong \bar{\Sigma}_{P, c}^{M} \cong\left(S^{*} S^{2}, \xi_{s t d}\right) \\
\bar{\Sigma}_{P, c}^{E, M} \cong\left(S^{*} S^{2}, \xi_{s t d}\right) \#\left(S^{*} S^{2}, \xi_{s t d}\right) .
\end{gathered}
$$

Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body problem, Poincaré's approach can be reduced to:
(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff's theorem:
An area-preserving homeomorphism of an annulus that rotates
the two boundaries in opposite directions (the twist condition)
has at least two fixed points.
Goal: Generalize this approach to the spatial problem.

Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body problem, Poincaré's approach can be reduced to:
(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff's theorem:
An area-preserving homeomorphism of an annulus that rotates the two boundaries in opposite directions (the twist condition) has at least two fixed points.

Goal: Generalize this approach to the spatial problem.

Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body problem, Poincaré's approach can be reduced to:
(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff's theorem:
An area-preserving homeomorphism of an annulus that rotates the two boundaries in opposite directions (the twist condition) has at least two fixed points.

Goal: Generalize this approach to the spatial problem.

Spatial circular restricted three-body problem Spatial version of Poincaré's program: Step 1 Spatial version of Poincare's program: Step 2 Holomorphic dynamics

Poincaré-Birkhoff and the planar problem

Figure: Obtaining closed orbits.

Open book decompositions

An open book decomposition on a closed odd-dimensional manifold M is a fibration $\pi: M \backslash B \rightarrow S^{1}$, where $B \subset M$ is a closed codimension-2 submanifold with trivial normal bundle, and $\pi(b, r, \theta)=\theta$ on some collar neighbourhood $B \times \mathbb{D}^{2}$ of B.

Abstract data: page $P=\overline{\pi^{-1}}(\mathrm{pt})$ (with $B=\partial P$ binding), monodromy ϕ

where $P_{\phi}=$ mapping torus.

Open book decompositions

An open book decomposition on a closed odd-dimensional manifold M is a fibration $\pi: M \backslash B \rightarrow S^{1}$, where $B \subset M$ is a closed codimension-2 submanifold with trivial normal bundle, and $\pi(b, r, \theta)=\theta$ on some collar neighbourhood $B \times \mathbb{D}^{2}$ of B.
Abstract data: page $P=\overline{\pi^{-1}}(p t)$ (with $B=\partial P$ binding), monodromy $\phi: P \stackrel{\cong}{\rightrightarrows} P,\left.\phi\right|_{B}=i d$.

$$
(P, \phi) \rightsquigarrow M=\mathbf{O B}(P, \phi)=P_{\phi} \bigcup B \times \mathbb{D}^{2}
$$

where $P_{\phi}=$ mapping torus.

Open book decompositions

Global hypersurfaces of section

If $\varphi_{t}: M \rightarrow M$ is a flow on M generated by an autonomous vector field X, then π is adapted to the dynamics if B is φ_{t}-invariant (i.e. $\left.X\right|_{B}$ is tangent to B), and X is transverse to the interior of all pages.

Each page P is a global hypersurface of section, i.e. it is codimension-1, $B=\partial P$ is a union of orbits, and the orbits of all points in $M \backslash B$ meet the interior of each page transversely in the future and past.

Poincaré return map $f: \operatorname{int}(P) \rightarrow \operatorname{int}(P)$.

Global hypersurfaces of section

If $\varphi_{t}: M \rightarrow M$ is a flow on M generated by an autonomous vector field X, then π is adapted to the dynamics if B is φ_{t}-invariant (i.e. $\left.X\right|_{B}$ is tangent to B), and X is transverse to the interior of all pages.

Each page P is a global hypersurface of section, i.e. it is codimension-1, $B=\partial P$ is a union of orbits, and the orbits of all points in $M \backslash B$ meet the interior of each page transversely in the future and past.
\rightsquigarrow Poincaré return map $f: \operatorname{int}(P) \rightarrow \operatorname{int}(P)$.

Open books and surfaces of section in the planar problem: historical remarks

Planar situation: smoothly $\mathbb{R} P^{3}=\mathbf{O B}\left(\mathbb{D}^{*} S^{1}, \tau_{0}^{2}\right)$, where $\tau_{0}=$ Dehn twist along $S^{1} \subset \mathbb{D}^{*} S^{1}$.
Perturbative methods:

- If $\mu \sim 0$ is small and $c<H\left(L_{1}\right)$, Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If $c \ll H\left(L_{1}\right)$ and $\mu \in(0,1)$, Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for $\mu \sim 0$ small and $c<H\left(L_{1}\right)$, and computes the return map.

Open books and surfaces of section in the planar problem: historical remarks

Planar situation: smoothly $\mathbb{R} P^{3}=\mathbf{O B}\left(\mathbb{D}^{*} S^{1}, \tau_{0}^{2}\right)$, where $\tau_{0}=$ Dehn twist along $S^{1} \subset \mathbb{D}^{*} S^{1}$.
Perturbative methods:

- If $\mu \sim 0$ is small and $c<H\left(L_{1}\right)$, Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.

Open books and surfaces of section in the planar problem: historical remarks

Planar situation: smoothly $\mathbb{R} P^{3}=\mathbf{O B}\left(\mathbb{D}^{*} S^{1}, \tau_{0}^{2}\right)$, where $\tau_{0}=$ Dehn twist along $S^{1} \subset \mathbb{D}^{*} S^{1}$.
Perturbative methods:

- If $\mu \sim 0$ is small and $c<H\left(L_{1}\right)$, Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If $c \ll H\left(L_{1}\right)$ and $\mu \in(0,1)$, Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for $\mu \sim 0$ small and $c<H\left(L_{1}\right)$, and computes the return map.

Open books and surfaces of section in the planar problem: historical remarks

Planar situation: smoothly $\mathbb{R} P^{3}=\mathbf{O B}\left(\mathbb{D}^{*} S^{1}, \tau_{0}^{2}\right)$, where $\tau_{0}=$ Dehn twist along $S^{1} \subset \mathbb{D}^{*} S^{1}$.
Perturbative methods:

- If $\mu \sim 0$ is small and $c<H\left(L_{1}\right)$, Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If $c \ll H\left(L_{1}\right)$ and $\mu \in(0,1)$, Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for $\mu \sim 0$ small and $c<H\left(L_{1}\right)$, and computes the return map.

Open books and surfaces of section in the planar problem

convexity range: $\mathcal{C}=\left\{(\mu, c), c<H\left(L_{1}\right)\right.$: Levi-Civita regularization of planar problem is convex $\}$.

Non-perturbative methods by Hofer-Wysocki-Zehnder:

- Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for $(\mu, c) \in \mathcal{C}$, give global disk-like surfaces of section.
- Hryniewicz-Salomão-Wysocki [HSW], for $(\mu, c) \in \mathcal{C}$, give such an open book on $\mathbb{R} P^{3}$ adapted to the dynamics.
- Hryniewicz-Salomão [HS], for $(\mu, c) \in \mathcal{C}$, give disk-like surfaces of section, the pages of a rational open book for $\mathbb{R} P^{3}$.

Open books and surfaces of section in the planar problem

convexity range: $\mathcal{C}=\left\{(\mu, c), c<H\left(L_{1}\right)\right.$: Levi-Civita regularization of planar problem is convex $\}$.

Non-perturbative methods by Hofer-Wysocki-Zehnder:

- Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for $(\mu, c) \in \mathcal{C}$, give global disk-like surfaces of section.
- Hryniewicz-Salomão-Wysocki [HSW], for $(\mu, c) \in \mathcal{C}$, give such an open book on $\mathbb{R} P^{3}$ adapted to the dynamics.

Open books and surfaces of section in the planar problem

convexity range: $\mathcal{C}=\left\{(\mu, c), c<H\left(L_{1}\right)\right.$: Levi-Civita regularization of planar problem is convex $\}$.

Non-perturbative methods by Hofer-Wysocki-Zehnder:

- Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for $(\mu, c) \in \mathcal{C}$, give global disk-like surfaces of section.
- Hryniewicz-Salomão-Wysocki [HSW], for $(\mu, c) \in \mathcal{C}$, give such an open book on $\mathbb{R} P^{3}$ adapted to the dynamics.
- Hryniewicz-Salomão [HS], for $(\mu, C) \in \mathcal{C}$, give disk-like surfaces of section, the pages of a rational open book for $\mathbb{R} P^{3}$.

Step 1: Open books in the spatial three-body problem

$\bar{\Sigma}_{c}=H^{-1}(c)$ compact and connected component of a (regularized) energy hypersurface in the SCR3BP.

Theorem (M.-van Koert)
For $\mu \in(0,1)$, we have

$$
\bar{\Sigma}_{c}=\left\{\begin{array}{cc}
\boldsymbol{O} \boldsymbol{B}\left(\mathbb{D}^{*} S^{2}, \tau^{2}\right), & \text { if } c<H\left(L_{1}\right) \\
\boldsymbol{O B}\left(\mathbb{D}^{*} S^{2} \mathfrak{q} \mathbb{D}^{*} S^{2}, \tau_{1}^{2} \circ \tau_{2}^{2}\right), & \text { if } c \in\left(H\left(L_{1}\right), H\left(L_{1}\right)+\epsilon\right),
\end{array}\right.
$$

which are adapted to the dynamics. Here, τ is the Dehn-Seidel twist along the zero section $S^{2} \subset \mathbb{D}^{*} S^{2}$.

Binding $B=S^{*} S^{2}=\partial \mathbb{D}^{*} S^{2}=\mathbb{R} P^{3}=$ planar problem for energy C.

Step 1: Open books in the spatial three-body problem

Figure: The open book in the spatial problem for $c<H\left(L_{1}\right)$.

Basic idea

Let $B=\left\{p_{3}=q_{3}=0\right\}$ (planar problem). Define

$$
\pi(q, p)=\frac{q_{3}+i p_{3}}{\left\|q_{3}+i p_{3}\right\|} \in S^{1}, d \pi=\frac{p_{3} d q_{3}-q_{3} d p_{3}}{p_{3}^{2}+q_{3}^{2}}
$$

Then

$$
d \pi\left(X_{H}\right)=\frac{p_{3}^{2}+q_{3}^{2} \cdot\left(\frac{1-\mu}{\|q-E\|^{3}}+\frac{\mu}{\|q-M\|^{3}}\right)}{p_{3}^{2}+q_{3}^{2}}>0
$$

for $p_{3}^{2}+q_{3}^{2} \neq 0$, and numerator vanishes only along B.
Problem: This does not extend to the collision locus.

Basic idea

Let $B=\left\{p_{3}=q_{3}=0\right\}$ (planar problem). Define

$$
\pi(q, p)=\frac{q_{3}+i p_{3}}{\left\|q_{3}+i p_{3}\right\|} \in S^{1}, d \pi=\frac{p_{3} d q_{3}-q_{3} d p_{3}}{p_{3}^{2}+q_{3}^{2}}
$$

Then

$$
d \pi\left(X_{H}\right)=\frac{p_{3}^{2}+q_{3}^{2} \cdot\left(\frac{1-\mu}{\|q-E\|^{3}}+\frac{\mu}{\|q-M\|^{3}}\right)}{p_{3}^{2}+q_{3}^{2}}>0
$$

for $p_{3}^{2}+q_{3}^{2} \neq 0$, and numerator vanishes only along B.
Problem: This does not extend to the collision locus.

Physical interpretation

Figure: The $\pi / 2$-page corresponds to $q_{3}=0, p_{3}>0$, and means that the spatial orbits of S are transverse to the plane spanned by E, M away from collisions.

Polar orbits

Figure: Polar orbits prevent transversality on the collision locus.

Return map

Theorem (M.-van Koert)

For every $\mu \in(0,1], c<H\left(L_{1}\right)$, and page P, the return map f extends smoothly to the boundary $B=\partial P$, and in the interior it is an exact symplectomorphism

$$
f=f_{c, \mu}:(\operatorname{int}(P), \omega) \rightarrow(\operatorname{int}(P), \omega)
$$

where $\omega=\left.d \alpha\right|_{P,} \alpha=\alpha_{\mu, c}$ contact form. Moreover, f is Hamiltonian in the interior, and the Hamiltonian isotopy extends smoothly to the boundary.

Here, ω degenerates at B, but after a continuous conjugation, it is deformation equivalent to the standard symplectic form. The Hamiltonian is not rel boundary.

Return map

Theorem (M.-van Koert)

For every $\mu \in(0,1], c<H\left(L_{1}\right)$, and page P, the return map f extends smoothly to the boundary $B=\partial P$, and in the interior it is an exact symplectomorphism

$$
f=f_{c, \mu}:(\operatorname{int}(P), \omega) \rightarrow(\operatorname{int}(P), \omega)
$$

where $\omega=\left.d \alpha\right|_{P}, \alpha=\alpha_{\mu, c}$ contact form. Moreover, f is Hamiltonian in the interior, and the Hamiltonian isotopy extends smoothly to the boundary.

Here, ω degenerates at B, but after a continuous conjugation, it is deformation equivalent to the standard symplectic form. The Hamiltonian is not rel boundary.

Spatial vs Planar orbits

Note that

$$
\operatorname{Fix}\left(f^{k}\right)=\operatorname{IntFix}\left(f^{k}\right) \bigcup \operatorname{BdyFix}\left(f^{k}\right)
$$

where
$\operatorname{IntFix}\left(f^{k}\right) \longleftrightarrow\{$ spatial orbits of period $k\}$ $\operatorname{BdyFix}\left(f^{k}\right) \rightarrow$ \{planar orbits $\}$

Goal: Find interior periodic points with arbitrary large minimal k.

Step 2: Fixed point theory of Hamiltonian twist maps

$(W, \omega=d \lambda)$ Liouville domain, $\alpha=\left.\lambda\right|_{B}$. Let $f:(W, \omega) \rightarrow(W, \omega)$ be a Hamiltonian symplectomorphism.

Definition

f is a Hamiltonian twist map if there exists a time-dependent Hamiltonian $H: \mathbb{R} \times W \rightarrow \mathbb{R}$ such that:

- H is smooth (or C^{2});
- $f=\phi_{H}^{1}$;
- There exists a smooth function $h: \mathbb{R} \times B \rightarrow \mathbb{R}$ which is positive and

$$
\left.X_{H_{t}}\right|_{B}=h_{t} R_{\alpha} .
$$

Fixed-point theorem

Theorem (M.-van Koert, Generalized Poincaré-Birkhoff theorem)

Suppose that f is an exact symplectomorphism of a Liouville domain (W, λ), and let $\alpha=\left.\lambda\right|_{B}$. Assume the following:

- (Hamiltonian twist map) f is a Hamiltonian twist map;
- (index-definiteness) If $\operatorname{dim} W \geq 4$, then assume $\left.c_{1}(W)\right|_{\pi_{2}(W)}=0$, and $(\partial W, \alpha)$ is strongly index-definite. In addition, assume all fixed points of f are isolated;
- (Symplectic homology) SH.(W) is infinite dimensional.

Then f has simple interior periodic points of arbitrarily large (integer) period.

A few remarks

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If $\operatorname{dim} W=2, \operatorname{dim} S H_{0}(W)=\infty$ iff $W \neq \mathbb{D}^{2}$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

A few remarks

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If $\operatorname{dim} W=2, \operatorname{dim} S H_{\bullet}(W)=\infty$ iff $W \neq \mathbb{D}^{2}$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

A few remarks

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If $\operatorname{dim} W=2, \operatorname{dim} S H_{\bullet}(W)=\infty$ iff $W \neq \mathbb{D}^{2}$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

A few remarks

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If $\operatorname{dim} W=2, \operatorname{dim} S H_{\bullet}(W)=\infty$ iff $W \neq \mathbb{D}^{2}$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

Holomorphic dynamics

Observation: the adapted open book $\mathbf{O B}\left(\mathbb{D}^{*} S^{2}, \tau^{2}\right)$ is iterated planar (IP), i.e. the page $\mathbb{D}^{*} S^{2}=\operatorname{LF}\left(\mathbb{D}^{*} S^{1}, \tau_{P}^{2}\right)$ admits a Lefschetz fibration with genus zero fibers, all inducing the open book $\mathbf{O B}\left(\mathbb{D}^{*} S^{1}, \tau_{P}^{2}\right)$ at the binding $\mathbb{R} P^{3}$.

Spatial circular restricted three-body problem Spatial version of Poincaré's program: Step 1 Spatial version of Poincare's program: Step 2

Holomorphic dynamics

$$
T^{*} S^{2}=\operatorname{LF}\left(T^{*} S^{1}, \tau_{P}^{2}\right)
$$

Figure: The standard Lefschetz fibration on $T_{*}^{*} S^{2}$.

Abstract page

Figure: Abstractly, the compact version of the Lefschetz fibration on a page P. F is the regular fiber, $L=\partial F$ is the "binding of the binding" B, a link.

Figure: The moduli space of fibers is a copy of $S^{3}=\mathbf{O B}\left(\mathbb{D}^{2}, \mathbb{1}\right)$.

Contact structures and Reeb dynamics on moduli

Let $\left(M, \xi_{M}\right)=\mathbf{O B}(P, \phi)$ be an IP 5-fold, $P=\mathbf{L F}\left(F, \phi_{F}\right)$.
$\operatorname{Reeb}(P, \phi)=\left\{\alpha\right.$ adapted contact form: $\left.\alpha\right|_{B}$ adapted to $\left.B=\mathbf{O B}\left(F, \phi_{F}\right)\right\}$.

Theorem (M., Contact structures and Reeb dynamics on moduli)

For a given $\alpha \in \boldsymbol{\operatorname { R e e b }}(P, \phi)$, there is a moduli space \mathcal{M} of $d \alpha$-symplectic copies of F foliating M, forming the fibers of a Lefschetz fibration on each page. \mathcal{M} is a contact manifold $\left(\mathcal{M}, \xi_{\mathcal{M}}\right) \cong\left(S^{3}, \xi_{s t d}\right)=\mathbf{O B}\left(\mathbb{D}^{2}, \mathbb{1}\right)$.
Any $\alpha \in \operatorname{Reeb}(P, \phi)$ induces a contact form $\alpha_{\mathcal{M}} \in \operatorname{Reeb}\left(\mathbb{D}^{2}, \mathbb{1}\right)$, ker $\alpha_{\mathcal{M}}=\xi_{\mathcal{M}}$, adapted to a trivial open book of the form $\theta_{\mathcal{M}}: \mathcal{M} \backslash \mathcal{M}_{B} \cong S^{3} \backslash S^{1} \rightarrow S^{1}$.

Idea: fiber-wise integration

The contact form $\alpha_{\mathcal{M}}$ is defined via

$$
\left(\alpha_{\mathcal{M}}\right)_{u}(v)=\int_{z \in F_{u}} \alpha_{z}(v(z)) d z
$$

where $F_{u}=\operatorname{im}(u), d z=\left.d \alpha\right|_{F_{u}}, u \in \mathcal{M}, v \in T \mathcal{M}$. Its Reeb vector field $R_{\mathcal{M}}$ is defined via
$\mathbf{D}_{u} R_{\mathcal{M}}=0$, where $\mathbf{D}_{u}=$ linearized CR-operator, $1=\left(\alpha_{\mathcal{M}}\right) u\left(R_{\mathcal{M}}(u)\right)=\int_{z \in F_{u}} \alpha_{z}\left(R_{\mathcal{M}}(z)\right) d z$. $0=\left(d \alpha_{\mathcal{M}}\right)_{u}\left(R_{\mathcal{M}}(u), \cdot\right)=\int_{z \in F_{u}} d \alpha_{z}\left(R_{\mathcal{M}}(z), \cdot\right) d z$.
$R_{\mathcal{M}}$ is a renarametrization of an $\frac{1}{2}^{2}$-projection of R to $T \mathcal{M}$ 企,

Idea: fiber-wise integration

The contact form $\alpha_{\mathcal{M}}$ is defined via

$$
\left(\alpha_{\mathcal{M}}\right)_{u}(v)=\int_{z \in F_{u}} \alpha_{z}(v(z)) d z
$$

where $F_{u}=\operatorname{im}(u), d z=\left.d \alpha\right|_{F_{u}}, u \in \mathcal{M}, v \in T \mathcal{M}$. Its Reeb vector field $R_{\mathcal{M}}$ is defined via
$\mathbf{D}_{u} R_{\mathcal{M}}=0$, where $\mathbf{D}_{u}=$ linearized CR-operator,

$$
\begin{gathered}
1=\left(\alpha_{\mathcal{M}}\right)_{u}\left(R_{\mathcal{M}}(u)\right)=\int_{z \in F_{u}} \alpha_{z}\left(R_{\mathcal{M}}(z)\right) d z \\
0=\left(d \alpha_{\mathcal{M}}\right)_{u}\left(R_{\mathcal{M}}(u), \cdot\right)=\int_{z \in F_{u}} d \alpha_{z}\left(R_{\mathcal{M}}(z), \cdot\right) d z
\end{gathered}
$$

$R_{\mathcal{M}}$ is a reparametrization of an L^{2}-projection of R_{α} to $T \mathcal{M}$,

Return map and symplectic tomographies

Figure: The return map f might not preserve the symplectic foliation. One can take symplectic tomographies D (a symplectic 2-disk) to induce return maps f_{D} on \mathcal{M}.

Shadowing cone

Figure: The shadowing cone is $C_{\alpha}=\pi_{*}(\operatorname{ker} d \alpha)$. Orbits of α project to orbits of the cone, which are transverse to $\xi_{\mathcal{M}}$ and to every page. The Reeb vector field $R_{\mathcal{M}}$ spans the average direction of C_{α}.

Holomorphic shadow

Define the holomorphic shadow map as

$$
\begin{gathered}
\mathbf{H S}: \operatorname{Reeb}(P, \phi) \rightarrow \boldsymbol{\operatorname { R e e b }}\left(\mathbb{D}^{2}, \mathbb{1}\right) \\
\alpha \mapsto \alpha_{\mathcal{M}}
\end{gathered}
$$

Integrable case: Rotating Kepler problem \mapsto Hopf flow on S^{3}
The return map preserves the foliation. The two nodal singularities are fixed, and correspond to the polar orbits. The map is a classical twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem)

HS is suriective.
In other words, Reeb dynamics in M is at least as complex as Reeb dynamics in S^{3}

Holomorphic shadow

Define the holomorphic shadow map as

$$
\begin{gathered}
\mathbf{H S}: \operatorname{Reeb}(P, \phi) \rightarrow \boldsymbol{\operatorname { R e e b }}\left(\mathbb{D}^{2}, \mathbb{1}\right) \\
\alpha \mapsto \alpha_{\mathcal{M}}
\end{gathered}
$$

Integrable case: Rotating Kepler problem \mapsto Hopf flow on S^{3}.
The return map preserves the foliation. The two nodal singularities are fixed, and correspond to the polar orbits. The map is a classical twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem)
HS is surjective.
In other words, Reeb dynamics in M is at least as complex as Reeb dynamics in S^{3}

Holomorphic shadow

Define the holomorphic shadow map as

$$
\begin{gathered}
\mathbf{H S}: \operatorname{Reeb}(P, \phi) \rightarrow \boldsymbol{\operatorname { R e e b }}\left(\mathbb{D}^{2}, \mathbb{1}\right) \\
\alpha \mapsto \alpha_{\mathcal{M}}
\end{gathered}
$$

Integrable case: Rotating Kepler problem \mapsto Hopf flow on S^{3}.
The return map preserves the foliation. The two nodal singularities are fixed, and correspond to the polar orbits. The map is a classical twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem)

HS is surjective.
In other words, Reeb dynamics in M is at least as complex as Reeb dynamics in S^{3}.
New program: Try to "lift" knowledge from dynamics on S^{3}.

Case of three-body problem

If $(\mu, c) \in \mathcal{C}$, combining our adapted open book with [HSW] on $B=\mathbb{R} P^{3} \rightsquigarrow \alpha_{\mu, c} \in \operatorname{Reeb}\left(\mathbb{D}^{*} S^{2}, \tau^{2}\right)$.

Further directions: Entropy

Joint work in progress with Umberto Hrynewicz, Abror Pirnapasov:

Claim 1: C^{∞}-generic Reeb flows on any closed 3-fold have positive topological entropy.
Pull back via the shadow map \rightsquigarrow
Claim 2: C^{∞}-generic Reeb flows in $\operatorname{Reeb}(P, \phi)$ also have positive topological entropy, for every IP 5-fold, generated by purely spatial orbits.

Closing remarks

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
Enter the famous Katok examples! they are a
counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S^{3}).
- This is a good time to revisit the origins.

Closing remarks

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
Enter the famous Katok examples! they are a
counterxample to the conclusion of the theorem, i.e. they
are not twist maps. BUT they are arbitrarily close to the
Kepler problem (geodesic flow on S^{3}).
- This is a good time to revisit the origins.

Closing remarks

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
Enter the famous Katok examples! they are a counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S^{3}).
- This is a good time to revisit the origins.

Closing remarks

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
Enter the famous Katok examples! they are a counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S^{3}).
- This is a good time to revisit the origins.

Complementary slides: Index growth

We call a strict contact manifold ($Y, \xi=\operatorname{ker} \alpha$) strongly index-definite if the contact structure ($\xi, d \alpha$) admits a symplectic trivialization ϵ so that:

- There are constants $c>0$ and $d \in \mathbb{R}$ such that for every Reeb chord $\gamma:[0, T] \rightarrow Y$ of Reeb action $T=\int_{0}^{T} \gamma^{*} \alpha$ we have

$$
\left|\mu_{R S}(\gamma ; \epsilon)\right| \geq c T+d
$$

where $\mu_{R S}$ is the Robbin-Salamon index.
Drop absolute value \rightsquigarrow index-positive.

Complementary slides: Examples of index-positivity

Lemma (Some examples)

- If $(Y, \alpha) \subset \mathbb{R}^{4}$ is a strictly convex hypersurface, then it is strongly index-positive.
- If $(Y, \operatorname{ker} \alpha)=\left(S^{*} Q, \xi_{\text {std }}\right)$ is symplectically trivial and (Q, g) has positive sectional curvature, then (Y, α) is strongly index-positive.

Complementary slides: special case of fixed-point theorem

Theorem (M.-van Koert, special case)

Let $W \subset\left(T^{*} M, \lambda_{\text {can }}\right)$ be fiber-wise star-shaped, with M simply connected, orientable and closed. Let $f: W \rightarrow W$ be a Hamiltonian twist map. Assume:

- Reeb flow on ∂W is strongly index-positive; and
- All fixed points of f are isolated.

Then f has simple interior periodic points of arbitrarily large period.

Complementary slides: Toy example

$Q=S^{n}$ with round metric.
$H: T^{*} Q \rightarrow \mathbb{R}, H(q, p)=2 \pi|p|$ not smooth at zero section.
Then $\phi_{H}^{1}=i d$, all orbits are periodic with same period.
Let $K=2 \pi g$, with $g=g(|p|)$ smoothing of $|p|$ near $p=0$. Then $\phi_{K}^{1}=\phi_{G}^{2 \pi g^{\prime}(|p|)}$, where ϕ_{G}^{t} geodesic flow, is a Hamiltonian twist map. It has simple orbits of arbitrary period $\left(g^{\prime}(|p|)=I / k\right.$ coprime $\rightsquigarrow k$-periodic orbit).

Complementary slides: Toy example

$Q=S^{n}$ with round metric.
$H: T^{*} Q \rightarrow \mathbb{R}, H(q, p)=2 \pi|p|$ not smooth at zero section.
Then $\phi_{H}^{1}=i d$, all orbits are periodic with same period.
Let $K=2 \pi g$, with $g=g(|p|)$ smoothing of $|p|$ near $p=0$. Then $\phi_{K}^{1}=\phi_{G}^{2 \pi g^{\prime}(|p|)}$, where ϕ_{G}^{t} geodesic flow, is a Hamiltonian twist map. It has simple orbits of arbitrary period $\left(g^{\prime}(|p|)=I / k\right.$ coprime $\rightsquigarrow k$-periodic orbit).

Complementary slides: dynamical applications

Definition

Let P be a page, and $f: \operatorname{int}(P) \rightarrow \operatorname{int}(P)$ a return map. A fiber-wise k-recurrent point is $x \in \operatorname{int}(P)$ such that $f\left(\mathcal{M}_{x}\right) \cap \mathcal{M}_{x} \neq \emptyset$.

This is a "symplectic version" of a leaf-wise intersection.

Theorem (M.)

In the SCR3BP, for every k, one can find sufficently small perturbations of the integrable cases which admit infinitely many fiber-wise k-recurrent points.

More further directions: Lagrangians

Conjecture (Long interior chords)

Suppose that f is an exact symplectomorphism of a Liouville domain (W, λ), let $\alpha=\left.\lambda\right|_{B}$, and $L \subset(W, \lambda)$ exact, spin, Lagrangian with Legendrian boundary. Assume the following:

- (Hamiltonian twist map) f is a Hamiltonian twist map;
- (index-definiteness) If dim $W \geq 4$, then assume $\left.c_{1}(W)\right|_{\pi_{2}(W)}=0$, and $(\partial W, \alpha)$ is strongly index-definite;
- (Wrapped Floer homology) WFH. (L) is infinite dimensional.
Then $f^{k}(\operatorname{int}(L)) \cap \operatorname{int}(L)$ is non-empty for k arbitrarily large.
Motivation: Finding long spatial collision orbits in the 3BP.

References I

围 P．Albers，J．Fish，U．Frauenfelder，H．Hofer，O．van Koert． Global surfaces of section in the planar restricted 3－body problem．
Arch．Ration．Mech．Anal．204（1）（2012），273－284．
囲 Albers，Peter；Frauenfelder，Urs；van Koert，Otto；Paternain， Gabriel P．
Contact geometry of the restricted three－body problem． Comm．Pure Appl．Math． 65 （2012），no．2，229－263．

嗇 Wanki Cho，Hyojin Jung，Geonwoo Kim．
The contact geometry of the spatial circular restricted 3－body problem．
arXiv：1810．05796

References II

圊 C. Conley.
On Some New Long Periodic Solutions of the Plane Restricted Three Body Problem.
Comm. Pure Appl. Math. 16 (1963), 449-467.

R
U. Hryniewicz and Pedro A. S. Salomão.

Elliptic bindings for dynamically convex Reeb flows on the real projective three-space.
Calc. Var. Partial Differential Equations 55 (2016), no. 2, Art. 43, 57 pp.

References III

E U. Hryniewicz, Pedro A. S. Salomão and K. Wysocki. Genus zero global surfaces of section for Reeb flows and a result of Birkhoff.
arXiv:1912.01078.
McGehee, Richard Paul. Some homoclinic orbits for the restricted three-body problem. Thesis (Ph.D.), The University of Wisconsin - Madison. ProQuest LLC, Ann Arbor, MI, 1969. 63 pp.

- Poincaré, H.

Sur un théoreme de géométrie.
Rend. Circ. Matem. Palermo 33, 375-407 (1912).

