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Spatial circular restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with
masses mE ,mM ,mS, under gravitational interaction.

Classical assumptions:
1 (Restricted) mS = 0, i.e. S is negligible.
2 (Circular) The primaries E and M move in circles around

their center of mass.
3 (Planar) S moves in the plane spanned by E and M.

Spatial case: drop the planar assumption.

Goal: Study motion of S.
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Spatial circular restricted three-body problem

In rotating coordinates so that E ,M are fixed, the Hamiltonian is
autonomous and so a conserved quantity:

H : R3\{E ,M} × R3 → R

H(q,p) =
1
2
‖p‖2 − µ

‖q −M‖
− 1− µ
‖q − E‖

+ p1q2 − p2q1,

where we normalize so that mE + mM = 1, and µ = mM .

Planar problem: p3 = q3 = 0 (flow-invariant subset).

Two parameters: µ, and H = c Jacobi constant.
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Integrable limit cases

If µ = 0 H = K + L, where

K (q,p) =
1
2
‖p‖2 − 1

‖q‖

is the Kepler energy (two-body problem), and

L = p1q2 − p2q1

is the Coriolis/centrifugal term. This is the rotating Kepler
problem.

Fact: c → −∞ Kepler problem.
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Hill regions

H has five critical points: L1, . . . ,L5 called Lagrangians.

H(L )=H(L )4 5

H(L )2 H(L )3

H(L )1

-3/2

μ

c

μ=1μ=0

rotating Kepler
   problem

c=-∞
Kepler problem

low energy
   range

Figure: The critical values of H.
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Holomorphic dynamics

Hill regions

For c ∈ R, let Σc = H−1(c). Consider

π : R3\{E ,M} × R3 → R3\{E ,M}

(q,p) 7→ q,

and the Hill region
Kc = π(Σc).
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Low energy Hill regions

near-Earth near-Moon
E M

asteroids

c<H(L )1
Σ MP,cΣ EP,c

q

p

Figure: Morse theory in the three-body problem.
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Figure: Morse theory in the three-body problem.
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Moser regularization

H is singular at collisions (q = E or q = M  p =∞), but can
be regularized via Moser’s recipe:

(q,p)
switch7−→ (−p,q)

stereo. proj.
7−→ (ξ, η) ∈ T ∗S3

We get compactifications for spatial energy levels:

ΣE
c  Σ

E
c
∼= S∗S3.

ΣM
c  Σ

M
c
∼= S∗S3.

ΣE ,M
c  Σ

E ,M
c
∼= S∗S3#S∗S3.

Similarly, the planar problem level sets get compactified to
Σ

E
P,c
∼= S∗S2 = RP3, Σ

M
P,c
∼= S∗S2 = RP3, Σ

E ,M
P,c
∼= RP3#RP3.

Agustin Moreno On the spatial restricted three-body problem



Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Moser regularization

H is singular at collisions (q = E or q = M  p =∞), but can
be regularized via Moser’s recipe:

(q,p)
switch7−→ (−p,q)

stereo. proj.
7−→ (ξ, η) ∈ T ∗S3

We get compactifications for spatial energy levels:

ΣE
c  Σ

E
c
∼= S∗S3.

ΣM
c  Σ

M
c
∼= S∗S3.

ΣE ,M
c  Σ

E ,M
c
∼= S∗S3#S∗S3.

Similarly, the planar problem level sets get compactified to
Σ

E
P,c
∼= S∗S2 = RP3, Σ

M
P,c
∼= S∗S2 = RP3, Σ

E ,M
P,c
∼= RP3#RP3.

Agustin Moreno On the spatial restricted three-body problem



Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Moser regularization

H is singular at collisions (q = E or q = M  p =∞), but can
be regularized via Moser’s recipe:

(q,p)
switch7−→ (−p,q)

stereo. proj.
7−→ (ξ, η) ∈ T ∗S3

We get compactifications for spatial energy levels:

ΣE
c  Σ

E
c
∼= S∗S3.

ΣM
c  Σ

M
c
∼= S∗S3.

ΣE ,M
c  Σ

E ,M
c
∼= S∗S3#S∗S3.

Similarly, the planar problem level sets get compactified to
Σ

E
P,c
∼= S∗S2 = RP3, Σ

M
P,c
∼= S∗S2 = RP3, Σ

E ,M
P,c
∼= RP3#RP3.

Agustin Moreno On the spatial restricted three-body problem



Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Moser regularization

p=∞

p=0

S3

S2

collision locus
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c

3

Σ = S*SE
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2

Figure: The Moser-regularized level set near E .
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Contact geometry of the three-body problem

Theorem (planar case: Albers-Frauenfelder-van
Koert-Paternain ’12, spatial case: Cho-Jung-Kim ’19)

For µ ∈ (0,1), c < H(L1), Σ
E
c and Σ

M
c are contact-type, and so

is Σ
E ,M
c for c ∈ (H(L1),H(L1) + ε) for some ε > 0. As contact

manifolds:
Σ

E
c
∼= Σ

M
c
∼= (S∗S3, ξstd ),

Σ
E ,M
c
∼= (S∗S3, ξstd )#(S∗S3, ξstd ).

The planar problem is a flow-invariant codim-2 contact
submanifold:

Σ
E
P,c
∼= Σ

M
P,c
∼= (S∗S2, ξstd ),

Σ
E ,M
P,c
∼= (S∗S2, ξstd )#(S∗S2, ξstd ).
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Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body
problem, Poincaré’s approach can be reduced to:
(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff’s theorem:

An area-preserving homeomorphism of an annulus that rotates
the two boundaries in opposite directions (the twist condition)
has at least two fixed points.

Goal: Generalize this approach to the spatial problem.
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Poincaré-Birkhoff and the planar problem

�

�(�)

      disk-like 
surface of section

�

�(�)

   annulus-like 
surface of section

Brouwer's translation theorem

Poincare-Birkhoff 
     theorem

+

+

Periodic points=closed orbits

Figure: Obtaining closed orbits.
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Open book decompositions

An open book decomposition on a closed odd-dimensional
manifold M is a fibration π : M\B → S1, where B ⊂ M is a
closed codimension-2 submanifold with trivial normal bundle,
and π(b, r , θ) = θ on some collar neighbourhood B × D2 of B.

Abstract data: page P = π−1(pt) (with B = ∂P binding),
monodromy φ : P

∼=→ P, φ|B = id .

(P, φ) M = OB(P, φ) = Pφ
⋃

B × D2,

where Pφ=mapping torus.
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Open book decompositions

S1

P

B

Figure: An open book decomposition.Agustin Moreno On the spatial restricted three-body problem
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Global hypersurfaces of section

If ϕt : M → M is a flow on M generated by an autonomous
vector field X , then π is adapted to the dynamics if B is
ϕt -invariant (i.e. X |B is tangent to B), and X is transverse to the
interior of all pages.

Each page P is a global hypersurface of section, i.e. it is
codimension-1, B = ∂P is a union of orbits, and the orbits of all
points in M\B meet the interior of each page transversely in the
future and past.

 Poincaré return map f : int(P)→ int(P).
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Open books and surfaces of section in the planar
problem: historical remarks

Planar situation: smoothly RP3 = OB(D∗S1, τ2
0 ), where

τ0 =Dehn twist along S1 ⊂ D∗S1.

Perturbative methods:
If µ ∼ 0 is small and c < H(L1), Poincaré [P12] provides
annulus-like global surfaces of section by perturbing the
rotating Kepler problem.
If c � H(L1) and µ ∈ (0,1), Conley [C63] shows there are
annulus-like surfaces of section and the return map is a
Birkhoff twist map, and uses Poincaré-Birkhoff.
McGehee [M69] provides a disk-like global surface of
section for µ ∼ 0 small and c < H(L1), and computes the
return map.
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Open books and surfaces of section in the planar
problem

convexity range: C = {(µ, c), c < H(L1) : Levi-Civita
regularization of planar problem is convex}.

Non-perturbative methods by Hofer-Wysocki-Zehnder:
Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for
(µ, c) ∈ C, give global disk-like surfaces of section.
Hryniewicz-Salomão-Wysocki [HSW], for (µ, c) ∈ C, give
such an open book on RP3 adapted to the dynamics.
Hryniewicz-Salomão [HS], for (µ, c) ∈ C, give disk-like
surfaces of section, the pages of a rational open book for
RP3.
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Holomorphic dynamics

Step 1: Open books in the spatial three-body problem

Σc = H−1(c) compact and connected component of a
(regularized) energy hypersurface in the SCR3BP.

Theorem (M.–van Koert)

For µ ∈ (0,1), we have

Σc =

{
OB(D∗S2, τ2), if c < H(L1)

OB(D∗S2\D∗S2, τ2
1 ◦ τ2

2 ), if c ∈ (H(L1),H(L1) + ε),

which are adapted to the dynamics. Here, τ is the Dehn-Seidel
twist along the zero section S2 ⊂ D∗S2.

Binding B = S∗S2 = ∂D∗S2 = RP3 = planar problem for
energy c.
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Step 1: Open books in the spatial three-body problem

�P

S1

2

3

(planar problem)

D*S

f

Hamiltonian flow

Figure: The open book in the spatial problem for c < H(L1).
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Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Basic idea

Let B = {p3 = q3 = 0} (planar problem). Define

π(q,p) =
q3 + ip3

‖q3 + ip3‖
∈ S1, dπ =

p3dq3 − q3dp3

p2
3 + q2

3
.

Then

dπ(XH) =
p2

3 + q2
3 ·
(

1−µ
‖q−E‖3 + µ

‖q−M‖3

)
p2

3 + q2
3

> 0,

for p2
3 + q2

3 6= 0, and numerator vanishes only along B.

Problem: This does not extend to the collision locus.
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Holomorphic dynamics

Physical interpretation

Figure: The π/2-page corresponds to q3 = 0, p3 > 0, and means that
the spatial orbits of S are transverse to the plane spanned by E ,M
away from collisions.

Agustin Moreno On the spatial restricted three-body problem



Spatial circular restricted three-body problem
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Polar orbits

E

S

Figure: Polar orbits prevent transversality on the collision locus.
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Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Return map

Theorem (M.–van Koert)

For every µ ∈ (0,1], c < H(L1), and page P, the return map f
extends smoothly to the boundary B = ∂P, and in the interior it
is an exact symplectomorphism

f = fc,µ : (int(P), ω)→ (int(P), ω),

where ω = dα|P , α = αµ,c contact form. Moreover, f is
Hamiltonian in the interior, and the Hamiltonian isotopy extends
smoothly to the boundary.

Here, ω degenerates at B, but after a continuous conjugation, it
is deformation equivalent to the standard symplectic form. The
Hamiltonian is not rel boundary.
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Holomorphic dynamics

Spatial vs Planar orbits

Note that
Fix(f k ) = IntFix(f k )

⋃
BdyFix(f k ),

where
IntFix(f k )←→ {spatial orbits of period k}

BdyFix(f k )→ {planar orbits}

Goal: Find interior periodic points with arbitrary large minimal
k .
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Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Step 2: Fixed point theory of Hamiltonian twist maps

(W , ω = dλ) Liouville domain, α = λ|B. Let f : (W , ω)→ (W , ω)
be a Hamiltonian symplectomorphism.

Definition
f is a Hamiltonian twist map if there exists a time-dependent
Hamiltonian H : R×W → R such that:

H is smooth (or C2);
f = φ1

H ;
There exists a smooth function h : R× B → R which is
positive and

XHt |B = htRα.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Fixed-point theorem

Theorem (M.–van Koert, Generalized Poincaré–Birkhoff
theorem)

Suppose that f is an exact symplectomorphism of a Liouville
domain (W , λ), and let α = λ|B. Assume the following:

(Hamiltonian twist map) f is a Hamiltonian twist map;
(index-definiteness) If dim W ≥ 4, then assume
c1(W )|π2(W ) = 0, and (∂W , α) is strongly index-definite. In
addition, assume all fixed points of f are isolated;
(Symplectic homology) SH•(W ) is infinite dimensional.

Then f has simple interior periodic points of arbitrarily large
(integer) period.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

A few remarks

Strong index definiteness is a technical assumption,
implied by strict convexity.
If dim W = 2, dim SH•(W ) =∞ iff W 6= D2.
A very vast generalization of the classical Poincaré-Birkhoff
theorem, in the spirit of the Conley conjecture (good).
We couldn’t check the twist condition in the three-body
problem (not so good).
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Holomorphic dynamics

Observation: the adapted open book OB(D∗S2, τ2) is iterated
planar (IP), i.e. the page D∗S2 = LF(D∗S1, τ2

P) admits a
Lefschetz fibration with genus zero fibers, all inducing the open
book OB(D∗S1, τ2

P) at the binding RP3.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

T ∗S2 = LF(T ∗S1, τ2
P)

x x

Birkhoff annulus

"opposite" Birkhoff annulus

central fiber

S2
D*S2

T*S = LF(T*S,τ )2

direct circular
 orbit

retrograde circular
 orbit

RP = OB(D*S ,τ ) 3

21

t

t

Liou
ville 

direc
tion

geodesic
 flow

21

vanishing 
cyclevanishing 

cycle

Lagrangian thimbleLagrangian thimble

π

P

P

Figure: The standard Lefschetz fibration on T ∗S2.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Abstract page

π

S

L=link

L

P=LF(F,Φ )
1

B=OB(F,Φ )F

F

F

Figure: Abstractly, the compact version of the Lefschetz fibration on a
page P. F is the regular fiber, L = ∂F is the “binding of the binding”
B, a link.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

P

D2

B

S3

S1

F

Figure: The moduli space of fibers is a copy of S3 = OB(D2,1).
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Contact structures and Reeb dynamics on moduli

Let (M, ξM) = OB(P, φ) be an IP 5-fold, P = LF(F , φF ).

Reeb(P, φ) = {α adapted contact form: α|B adapted to
B = OB(F , φF )}.

Theorem (M., Contact structures and Reeb dynamics on
moduli)

For a given α ∈ Reeb(P, φ), there is a moduli spaceM of
dα-symplectic copies of F foliating M, forming the fibers of a
Lefschetz fibration on each page. M is a contact manifold
(M, ξM) ∼= (S3, ξstd ) = OB(D2,1).

Any α ∈ Reeb(P, φ) induces a contact form αM ∈ Reeb(D2,1),
kerαM = ξM, adapted to a trivial open book of the form
θM :M\MB

∼= S3\S1 → S1.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Idea: fiber-wise integration

The contact form αM is defined via

(αM)u(v) =

∫
z∈Fu

αz(v(z))dz,

where Fu = im(u), dz = dα|Fu , u ∈M, v ∈ TM. Its Reeb
vector field RM is defined via

DuRM = 0, where Du = linearized CR-operator,

1 = (αM)u(RM(u)) =

∫
z∈Fu

αz(RM(z))dz,

0 = (dαM)u(RM(u), ·) =

∫
z∈Fu

dαz(RM(z), ·)dz.

RM is a reparametrization of an L2-projection of Rα to TM.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Return map and symplectic tomographies

f

f

D

D

f(D)

P P

P P

L

L L=f(L)

L=f(L)

M M

Figure: The return map f might not preserve the symplectic foliation.
One can take symplectic tomographies D (a symplectic 2-disk) to
induce return maps fD onM.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Shadowing cone

P

D2

B

S3

S1

C

Rα

α

F

F

ker(d θ  ) 

R
α

M

M Mξ =ker(α )

MMP =

C

Figure: The shadowing cone is Cα = π∗(ker dα). Orbits of α project to
orbits of the cone, which are transverse to ξM and to every page. The
Reeb vector field RM spans the average direction of Cα.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Holomorphic shadow
Define the holomorphic shadow map as

HS : Reeb(P, φ)→ Reeb(D2,1)

α 7→ αM.

Integrable case: Rotating Kepler problem 7→ Hopf flow on S3.
The return map preserves the foliation. The two nodal singularities
are fixed, and correspond to the polar orbits. The map is a classical
twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem)

HS is surjective.

In other words, Reeb dynamics in M is at least as complex as Reeb
dynamics in S3.

New program: Try to “lift” knowledge from dynamics on S3.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Case of three-body problem

If (µ, c) ∈ C, combining our adapted open book with [HSW] on
B = RP3  αµ,c ∈ Reeb(D∗S2, τ2).

Hopf flow

HS

μ

Reeb(LF(D*S,τ ),τ )P
1 2 2

2D*S

μ=0 μ=1

c

H(L ( ))1 μ

μ=1/2

c=-3/2 c=-3/2

c=- 8

Kepler
problem

rotating
 Kepler
problem

convexity 
range

"integrable" fiber

Reeb(D , )2 1
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Further directions: Entropy

Joint work in progress with Umberto Hrynewicz, Abror
Pirnapasov:

Claim 1: C∞-generic Reeb flows on any closed 3-fold have
positive topological entropy.

Pull back via the shadow map 

Claim 2: C∞-generic Reeb flows in Reeb(P, φ) also have
positive topological entropy, for every IP 5-fold, generated by
purely spatial orbits.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Closing remarks

Hamiltonian maps which are not the identity at the
boundary should perhaps be studied more systematically,
specially in higher dimensions.
The Hamiltonian twist condition, if true at all, seems HARD
to check.
Enter the famous Katok examples! they are a
counterxample to the conclusion of the theorem, i.e. they
are not twist maps. BUT they are arbitrarily close to the
Kepler problem (geodesic flow on S3).
This is a good time to revisit the origins.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Thank you!
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Complementary slides: Index growth

We call a strict contact manifold (Y , ξ = kerα) strongly
index-definite if the contact structure (ξ,dα) admits a
symplectic trivialization ε so that:

There are constants c > 0 and d ∈ R such that for every
Reeb chord γ : [0,T ]→ Y of Reeb action T =

∫ T
0 γ∗α we

have
|µRS(γ; ε)| ≥ cT + d ,

where µRS is the Robbin–Salamon index.

Drop absolute value index-positive.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Complementary slides: Examples of index-positivity

Lemma (Some examples)

If (Y , α) ⊂ R4 is a strictly convex hypersurface, then it is
strongly index-positive.
If (Y , kerα) = (S∗Q, ξstd ) is symplectically trivial and (Q,g)
has positive sectional curvature, then (Y , α) is strongly
index-positive.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Complementary slides: special case of fixed-point
theorem

Theorem (M.–van Koert, special case)

Let W ⊂ (T ∗M, λcan) be fiber-wise star-shaped, with M simply
connected, orientable and closed. Let f : W →W be a
Hamiltonian twist map. Assume:

Reeb flow on ∂W is strongly index-positive; and
All fixed points of f are isolated.

Then f has simple interior periodic points of arbitrarily large
period.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Complementary slides: Toy example

Q = Sn with round metric.
H : T ∗Q → R, H(q,p) = 2π|p| not smooth at zero section.
Then φ1

H = id , all orbits are periodic with same period.

Let K = 2πg, with g = g(|p|) smoothing of |p| near p = 0. Then
φ1

K = φ
2πg′(|p|)
G , where φt

G geodesic flow, is a Hamiltonian twist
map. It has simple orbits of arbitrary period (g′(|p|) = l/k
coprime k -periodic orbit).

p

g
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

Complementary slides: dynamical applications

Definition
Let P be a page, and f : int(P)→ int(P) a return map. A
fiber-wise k -recurrent point is x ∈ int(P) such that
f (Mx ) ∩Mx 6= ∅.

This is a “symplectic version” of a leaf-wise intersection.

Theorem (M.)
In the SCR3BP, for every k, one can find sufficently small
perturbations of the integrable cases which admit infinitely
many fiber-wise k-recurrent points.
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Spatial circular restricted three-body problem
Spatial version of Poincaré’s program: Step 1
Spatial version of Poincare’s program: Step 2

Holomorphic dynamics

More further directions: Lagrangians

Conjecture (Long interior chords)

Suppose that f is an exact symplectomorphism of a Liouville
domain (W , λ), let α = λ|B, and L ⊂ (W , λ) exact, spin,
Lagrangian with Legendrian boundary. Assume the following:

(Hamiltonian twist map) f is a Hamiltonian twist map;
(index-definiteness) If dim W ≥ 4, then assume
c1(W )|π2(W ) = 0, and (∂W , α) is strongly index-definite;
(Wrapped Floer homology) WFH•(L) is infinite
dimensional.

Then f k (int(L)) ∩ int(L) is non-empty for k arbitrarily large.

Motivation: Finding long spatial collision orbits in the 3BP.
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